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Synthetic organic chemistry and medicinal chemistry are the most significant 

fields of research in chemistry, where 4-arylbutan-2-ones find applications by allowing 
access to chemical entities otherwise difficult to synthesize, or in the de novo 

development of drug candidates. Structure-aided design based on previous results from 

our group has led to advances in shaping the structure of a series of novel imidazole-
based heme oxygenase inhibitors. The practical generation of these inhibitors requires 

the synthesis of a set of 4-arylbutan-2-ones to be employed as starting materials in a 

reaction sequence that would afford in the end the desired imidazole-containing 
inhibitor target compounds. The present report illustrates the use of an one-step 

alkylation–cleavage synthetic approach toward such 4-arylbutan-2-ones featuring, in 

most cases, a hydrophobic para-substituent in the aromatic ring, starting from low-cost, 
commercially available organic reagents (pentane-2,4-dione and the suitably substituted 

benzyl bromides). The work described in this study represents an extension of a 

synthetic entry to this type of organic compounds, previously exploited in our group for 
the preparation of several structural analogs. The identity of the obtained 4-arylbutan-2-

ones was established using nuclear magnetic resonance spectroscopy and high 

resolution mass spectrometry.   

Keywords: organic synthesis, chemical intermediates, ketones, alkylation–

cleavage, structural investigation  

1. INTRODUCTION 

4-Arylbutan-2-ones are both significant building blocks in organic chemistry 

and starting materials for pharmacologically important compounds. In addition to 

common chemical modifications of the reactive carbonyl function (such as 

reduction to secondary alcohol [1,2], addition of organometallic reagents [3–5], 

conversion to carbonyl functional derivatives [6–9], etc.) or to substitution 

reactions at carbon α to the carbonyl function [10–14], 4-arylbutan-2-ones have 
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been shown to participate as substrates in the Wittig reaction [15], Horner-

Wadsworth-Emmons olefinations [16], Strecker-type aminocyanations [17], 

synthesis of gem-difluoroalkenes [18] or β,β-diaryl α,β-unsaturated ketones [19]. 

The presence of the 3-arylpropyl motif in the structure of 4-arylbutan-2-ones 

renders these compounds effective starting materials in the synthesis of benzofused 

heterocyclic and carbocyclic ring systems (such as quinolines [20], 1,2,3,4-

tetrahydroquinolines [21], indanes [22] or 1,2,3,4-tetrahydronaphthalenes [23]), but 

also for various other heterocycles [24, 25]. In the realm of medicinal chemistry, 4-

arylbutan-2-ones have proven to be crucial starting materials that allow access to 

photoactivatable propofol analogs [26], agents that strongly reduce the formation 

of Pseudomonas aeruginosa biofilms [27], compounds with inhibitory activity of 

tyrosinase [28], anti-inflammatory diarylheptanoids that deter the production of 

lipopolysaccharide-induced tumor necrosis factor-α [29], candidates with excellent 

binding affinity and subtype selectivity for σ2 receptors, whose 11C-labeled analogs 

are useful as radiotracers in brain positron emission tomography [30], structurally 

diverse agonists of β2 adrenoreceptor potentially useful as bronchodilator agents in 

the treatment of asthma [31,32], or inhibitors of heme oxygenase for the therapy of 

hormone-refractory prostate cancer [33].  

Some time ago, we have designed and synthesized a collection of imidazole-

containing inhibitors of heme oxygenase as simplified versions of azalanstat 1  

(Fig. 1), which retained the basic scaffold of the parent compound, while various 

oxygen-based substituents were installed onto its central region, with a view to 

render any potentially active, structurally related molecules accessible through 

facile synthetic approaches that featured a small number of stages [14]. Structure–

activity relationship in this library of inhibitors suggested that the nature of the 

para substituent of the phenyl ring in these heme oxygenase (HO) inhibitors could 

be essential to their activity (which was excellent especially in the case of the 

bromine- and iodine-substituted compounds), owing to its ability to undergo polar–

polar interactions with some unidentified amino acid residues at the far end of 

substrate’s binding loops. This hypothesis was subsequently confirmed through the 

analysis of the X-ray crystal structure of the ternary complex of rat HO-1 with 

inhibitor 2 (Fig. 1) and heme [34], which showed that the inhibitor is stabilized 

inside the active site of the enzyme through contacts between its chlorine 

substituent of the phenyl ring and Phe33 and Phe37 of the rat HO-1–heme complex. 

Further investigations of other X-ray crystal structures of ternary complexes of rat 

HO-1 with heme and various excellent inhibitors of HO-1 3, 4 and 5 (Fig. 1) also 

substantiate the significance of the binding of the western region of these inhibitors 

through hydrophobic interactions involving residues lining the distal hydrophobic 

pocket (i.e. Phe33, Met34, Phe37, Val50, Leu54, Leu147, Phe167 and Phe214) of 

truncated human HO-1 on the stabilization of the inhibitor-containing complex 

[35–38]. Relying on the conclusion drawn from these studies, structure-aided 

design of a next generation of inhibitors that feature hydrophobic substituents in 
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the phenyl ring of their western region has been undertaken. The present study 

deals with the synthesis of several 4-arylbutan-2-ones, which are required as 

starting materials in the reaction sequence leading to these novel inhibitors. 

 

Fig. 1. Topological analysis of azalanstat 1, and structures of various selective imidazole-based HO 

inhibitors 2–5 that have been co-crystallized with HO-1 isozyme and heme. 

2. EXPERIMENTAL 

2.1. REAGENTS, MATERIALS AND INSTRUMENTATION 

All chemical reagents and solvents were obtained from Sigma-Aldrich 

(Oakville, ON, Canada). Column chromatography was performed on Silicycle 

(Quebec City, QC, Canada) silica gel (230–400 mesh, 60 Å). Analytical thin-layer 

chromatography was performed on glass-backed Silicycle precoated silica gel 60 

F254 plates, and the compounds were visualized by UV illumination (254 nm). 

Melting points were taken on a Mel-Temp II apparatus (Laboratory Devices, Inc., 

Holliston, MA, USA) and are uncorrected. 1H and 13C nuclear magnetic resonance 

(NMR) spectra were recorded on a Bruker Avance 400 MHz spectrometer (Bruker 
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BioSpin Ltd., Milton, ON, Canada). The signal owing to residual protons in 

deuterated chloroform (δ = 7.26 ppm) was used as internal standard for the 1H 

NMR spectra. The chemical shifts for the carbon atoms are given relative to CDCl3 

(δ = 77.16 ppm). High-resolution mass spectra (HRMS) were obtained on an 

Applied Biosystems/MDS Sciex QSTAR XL spectrometer (Applied Biosystems, 

Inc., Foster City, CA, USA) equipped with an Agilent HP1100 Cap-LC system, in 

electron ionization (EI) mode.  

2.2. SYNTHESIS 

General procedure for the synthesis of 4-arylbutan-2-ones  

A mixture of pentane-2,4-dione 11 (500 mg, 5 mmol), a 4-substituted benzyl 

bromide 6–10 (5 mmol), and anh. K2CO3 (690 mg, 5 mmol) in methanol (25 mL) 

was heated at reflux temperature overnight (at least 16 h). The mixture was then 
cooled to room temperature, the solvent was removed under reduced pressure, and 

the resulting residue was partitioned between ethyl acetate (20 mL) and water 

(20 mL). The organic layer was separated, and the aqueous layer was further 
extracted with ethyl acetate (2 × 10 mL). The combined organic phase was washed 

with water (15 mL), dried over anh. Na2SO4, and then the solvent was removed 

under reduced pressure. The resulting oil was chromatographed on a silica gel 

column using hexanes–ethyl acetate as the mobile phase to give the title 
compounds.  

4-(4-Methylphenyl)butan-2-one 12. This compound was obtained from  

4-methylbenzyl bromide 6 (925 mg, 5 mmol) according to the general procedure, 
as a clear oil (495 mg, 61%), Rf = 0.14 (hexanes–ethyl acetate 15:1, v/v). 1H NMR 

(400 MHz, CDCl3), δ (ppm): 2.14 (s, 3H), 2.32 (s, 3H), 2.74 (t, J = 7.4 Hz, 2H), 

2.87 (t, J = 7.4 Hz, 2H), 7.05–7.12 (m, 4H). 13C NMR (100 MHz, CDCl3), δ (ppm): 
21.1, 29.4, 30.2, 45.4, 128.3, 129.3, 135.7, 138.0, 208.2. HRMS (EI), m/z: calcd. 

for C11H14O: 162.1045 (M+). Found 162.1049. NMR data is in agreement with the 

literature [39]. 

4-[4-(Isopropyl)phenyl]butan-2-one 13. This compound was obtained from 
4-(isopropyl)benzyl bromide 7 (1065 mg, 5 mmol) according to the general 

procedure, as a clear oil (620 mg, 65%), Rf = 0.31 (hexanes–ethyl acetate 9:1, v/v). 
1H NMR (400 MHz, CDCl3), δ (ppm): 1.24 (d, J = 6.8 Hz, 6H), 2.15 (s, 3H), 2.76 
(t, J = 7.6 Hz, 2H), 2.83–2.94 (m, 3H), 7.14 (dd, J = 8.0 Hz, 4H). 13C NMR (100 

MHz, CDCl3), δ (ppm): 24.1, 29.5, 30.1, 33.8, 45.4, 126.7, 128.3, 138.4, 146.8, 

208.0. HRMS (EI), m/z: calcd. for C13H18O: 190.1358 (M+). Found 190.1352.  
4-[4-(tert-Butyl)phenyl]butan-2-one 14. This compound was obtained from 

4-(t-butyl)benzyl bromide 8 (1135 mg, 5 mmol) according to the general procedure, 

as a clear oil (735 mg, 72%), Rf = 0.26 (hexanes–ethyl acetate 9:1, v/v). 1H NMR 

(400 MHz, CDCl3), δ (ppm): 1.32 (s, 9H), 2.15 (s, 3H), 2.76 (t, J = 7.2 Hz, 2H), 
2.88 (t, J = 7.6 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H). 13C 
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NMR (100 MHz, CDCl3), δ (ppm): 29.3, 30.1, 31.5, 34.5, 45.3, 125.5, 128.1, 138.0, 

149.1, 208.2. HRMS (EI), m/z: calcd. for C14H20O: 204.1514 (M+). Found 

204.1510. 1H NMR data is in agreement with the literature [40]. 

4-[4-(Trifluoromethyl)phenyl]butan-2-one 15. This compound was obtained 

from 4-(trifluoromethyl)benzyl bromide 9 (1195 mg, 5 mmol) according to the 

general procedure, as a pale yellow oil (250 mg, 23%), Rf = 0.32 (hexanes–ethyl 

acetate 6:1, v/v). 1H NMR (400 MHz, CDCl3), δ (ppm): 2.15 (s, 3H), 2.78 (t, J = 

7.6 Hz, 2H), 2.95 (t, J = 7.6 Hz, 2H) 7.30 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.0 Hz, 

2H). 13C NMR (100 MHz, CDCl3), δ (ppm): 29.5, 30.1, 44.6, 124.4 (q, J1
C,F = 270 

Hz), 125.6 (q, J3
C,F = 3 Hz), 128.7 (q, J2

C,F = 32 Hz), 128.8, 145.3, 207.2. 19F NMR 

(376 MHz, CDCl3), δ (ppm): -63.4. HRMS (EI), m/z: calcd. for C11H11F3O: 

216.0762 (M+). Found 216.0763. NMR data is in agreement with the literature [41]. 

4-(4-Nitrophenyl)butan-2-one 16. This compound was obtained from 4-

nitrobenzyl bromide 10 (1080 mg, 5 mmol) according to the general procedure, as 

an amber solid (485 mg, 50%), mp 37–38 ºC (lit. mp 37–40 ºC [42]), Rf = 0.36 

(hexanes–ethyl acetate 3:1, v/v). 1H NMR (400 MHz, CDCl3), δ (ppm): 2.15 (s, 

3H), 2.81 (t, J = 7.4 Hz, 2H), 2.99 (t, J = 7.4 Hz, 2H), 7.34 (d, J = 8.8 Hz, 2H), 

8.12 (d, J = 8.8 Hz, 2H). 13C NMR (100 MHz, CDCl3), δ (ppm): 29.5, 30.2, 44.3, 

123.9, 129.4, 146.7, 149.1, 206.8. HRMS (EI), m/z: calcd. for C10H11NO3: 

193.0739 (M+). Found 193.0734. NMR data is in agreement with the literature [42]. 

3. RESULTS AND DISCUSSION 

Access to 4-arylbutan-2-ones can be achieved through numerous synthetic 

strategies and, while some of these approaches have a limited use, others are of a 

broader scope. Among the latter, two-stage synthetic pathways are well represented 

by a sequence comprising the generation of an arylideneacetone (either through the 

base-catalyzed Claisen–Schmidt condensation of a suitably substituted aromatic 

aldehyde with acetone or through a Horner-Wadsworth-Emmons reaction between a 

conveniently substituted aromatic aldehyde and triphenylphosphoranylidenepropan-

2-one) in the first step, followed by chemoselective conjugate reduction of the double 

carbon–carbon bond in the resulting enone (route i in Fig. 2) [21,32], or by the 

procedure involving the base-catalyzed alkylation of an acetoacetic ester with a 

benzyl halide, followed by cleavage of the ester moiety in the alkylated β-keto ester, 

either in the presence of an acid or base [43], or by the Krapcho 

dealkoxycarbonylation (route ii in Fig. 2) [44]. The advent of palladium-catalyzed 

cross-coupling reaction in the past decades has provided more opportunities for 

access to 4-arylbutan-2-ones through the one-stage reaction between an aromatic 

halide and 3-buten-2-ol in the general framework of the Heck–Mizoroki reaction 

(route iii in Fig. 2) [45, 46]. Route iv in Figure 2 illustrates the one-step preparative 

entry to 4-arylbutan-2-ones that comprises the reaction between a benzyl halide-
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type of alkylating agent and pentane-2,4-dione through an one-pot alkylation–

cleavage approach that was employed in this study. This latter procedure appears 

more convenient than the two-stage methodologies in routes i and ii, because it 

does not require the isolation and purification of the intermediate enone and 

alkylated β-keto ester, respectively, and it seems also more advantageous than the 

type of reactions depicted in route iii, which require the use of more expensive, 

oxygen-sensitive palladium-based catalysts.  

 

Fig. 2. Overview of the most representative synthetic routes for 4-arylbutan-2-ones 

The alkylation–cleavage approach to form 4-arylbutan-2-ones in a single 

procedure can be successfully conducted in anhydrous low molecular weight 

alcohols, while anhydrous K2CO3 plays the role of the required base, being suitable 

in both processes (alkylation of pentane-2,4-dione, and cleavage of the acetyl 

residue from the alkylated β-diketone) of this approach [14]. The reaction is 

performed at the reflux temperature of the solvent for long periods of time (usually 

overnight), with a view to ensure the complete conversion of the alkylating agent. 

Despite having a lower boiling point than ethanol, methanol has been the solvent of 

choice in the employed method because commercial methanol (having usually a 

water content lower than 0.05%) is cheaper than anhydrous ethanol. The crude 

material that resulted at the end of work-up of the reaction mixture was subjected 

to column chromatography, and the pure compound was obtained by pooling only 

those fractions that contained a single spot on the thin layer chromatography plates, 

which spot was associated with the target 4-arylbutan-2-one. According to the data 

provided in the Experimental part and also to our previous experience in very 

similar cases [14], this approach normally produces the desired compounds in 
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satisfactory yields. However, butanone 15 represents a notable exception to this 

canon, with a low yield of 23%. Being outside the scope of this study, this 

unexpected behavior of benzyl bromide 9 in this reaction has not been investigated 

any further with respect to the nature of the by-products resulted from side 

reactions occurring in this process. To the best of our knowledge, this particular 

synthetic strategy has been already employed so far only for the preparation of 

compound 12 in 62% yield [47] and for compound 16 in 66% yield [48], while 

butanones 13, 14 and 15 have been obtained using other synthetic methods (such as 

those illustrated by routes i to iii in Fig. 2).  

 

Fig. 3. Synthesis of 4-arylbutan-2-ones through an alkylation–cleavage strategy 

The structure of the synthesized 4-arylbutan-2-ones 12–16 has been 

investigated using NMR and HRMS spectroscopy. The signals that should be 

considered a hallmark for these compounds in terms of structure ascertainment by 
proton NMR are the two well-defined triplets (integrating each for two protons and 

corresponding to the protons in the methylene groups) and a singlet at 

approximately 2.15 ppm (integrating for three protons and assigned to the protons 
in the methyl group), these signals having been identified for each of these 

compounds in the aliphatic region of their proton NMR spectra. The chemical shift 

values for the triplets associated with protons in the methylene groups are usually 

close to 2.75 ppm (for the protons in the methylene adjacent to the carbonyl group) 
and close to 2.88 ppm for the protons in the methylene adjacent to the aromatic 

ring in compounds 12–14 that have an alkyl substituent in the aromatic ring. On the 

other hand, the electron withdrawing influence of the CF3 substituent in compound 
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15 and of the NO2 substituent in compound 16 has a deshielding effect on the 

protons in the methylene adjacent to the aromatic ring in these compounds, which 

manifests itself in their chemical shift values higher (2.95 ppm for 15 and 2.99 ppm 
for 16) than those recorded for their analogs 12–14. In the case of compound 13, 

the signal of the methine proton from the isopropyl substituent of the phenyl ring is 

superimposed over the triplet of the protons in the methylene adjacent to the 

aromatic ring, making the peaks associated with these three protons to appear as a 
multiplet. In addition, the correct number of aromatic protons whose signals 

display the splitting that is common for the AA′BB′ spin systems of para-

disubstituted benzene rings with non-identical substituents has been found in the 
aromatic region of the proton NMR spectra of the target butanones. In the carbon 

NMR spectra of 4-arylbutan-2-ones 12–16, the peak corresponding to the carbon 

atom in the terminal methyl group has been found at chemical shift values slightly 
above 30 ppm. The chemical shift value for the carbon atom in the methylene 

group neighboring the aromatic ring has been found at or close to 29.5 ppm, while 

the carbon atom in the methylene group adjacent to the carbonyl function usually 

gives a peak at approximately 45 ppm. The carbon atom in the carbonyl group has 
been assigned to the peak at approximately 208 ppm, which is typical for aliphatic 

ketones that normally present a peak in their 13C NMR spectra for this carbon atom 

at chemical shifts above 200 ppm. All of the aromatic carbon atoms in the structure 
of 4-arylbutanon-2-ones 12–16 have been accounted for, while the effect of the 

fluorine in the trifluoromethyl group on the splitting of the peaks of the aromatic 

carbon atoms in the structure of compound 15 has been detailed in the description 

of this compound’s spectra in Experimental. Also, the peak identified at -63.4 ppm in 
the 19F NMR spectra of compound 15 is typical for a simple trifluoromethyl-substituted 

aromatic ring, as the magnetically identical flourine atoms in trifluorotoluene itself 

have a similar chemical shift value (-63.72 ppm). Finally, the monoisotopic mass 
values that have been determined experimentally for 4-arylbutan-2-ones 12–16 present 

deviations from the calculated m/z lower than 5 ppm and well within the accepted 

margin of error for this type of experimental data. 

4. CONCLUSIONS 

The one-step synthetic approach comprising the alkylation of pentane-2,4-

dione with alkyl bromides and subsequent cleavage of an acetyl fragment from the 

alkylated β-diketone has provided facile access to the desired 4-arylbutan-ones, 

usually with satisfactory yields. Structural analysis of the target compounds has 

confirmed beyond any doubt their structure. These intermediates have been 

subsequently showed to act as starting materials in a reaction sequence leading to 

imidazoles useful as inhibitors of heme oxygenase, whose synthesis and biological 

activity will be reported elsewhere.   
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