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The procedures of quantization are the same in the case of matter as in the case of 

light. They involve specific invariants to the scale change, and specific statistics 

describing that scale change in physics. A previous part of this work [35] explores the 

general mathematics of the physics involved in the problem of quantization. The present 

part deepens the similitude between the procedures of quantization in light and matter, 

by proving the identity of the resonators serving for quantization from a thermodynamical 

point of view. They are dipoles: electric in the case of light – Planck’s resonators, 

representing the matter – and magnetic in the case of matter – Procopiu’s resonators, 

representing the light. Mathematical details are exposed, and some physical 

consequences in observance thereof are explored. 

Keywords: Louis de Broglie’s ray, Planck’s resonator, Procopiu’s resonator, 

resonator’s structure, universal optical medium, instanton, Ampère current element 

There are more things in heaven and earth, Horatio, 

than are dreamt of in your philosophy. 

Hamlet, Prince of Denmark 

1. INTRODUCTION

Procopiu’s quantization procedure is the only quantization procedure in the 

case of matter that reproduces the Planck’s archetypal procedure from the case of 

light [35]. The essential differences between the two procedures of quantization stay 

in details of realization: (1) the structure of the quantum (universal constant, in the 

case of Planck, vs. invariant, in the case of Procopiu), and (2) the associated statistics 

(discrete, in the case of Planck, vs. continuous, in the case of Procopiu). However, 

the nature of the two essential items of this kind of quantization procedure is the 

same in the two cases, indicating the differentiae of such a concept: the quantum is 

a mathematical invariant connected with a dynamics just like the classical 
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Newtonian force, and the associated statistics is that of ensembles described by 
probability densities with quadratic variance function, invented by Max Planck in 
order to serve the quantization. These two defining differentiae of the concept of 
quantization procedure initiated by Max Planck are, by and large, not of physical 
nature. In this work, however, we intend to go deeper into the parallel between the 
quantization of light and the quantization of matter, by showing that it goes beyond 
non-physical criteria. There is a more detailed parallelism between the two 
procedures, and it regards the very physical structure of the resonator invented by 
Max Planck which, besides its definition as an instanton given by us previously (see 
[35], §4.4), needs a little theoretical explanation in order to be suitably understood 
and applied for the case of matter. 

Our ideas in approaching this analogy came largely from applying the scale 
transition perspective to a description of the physical structure of matter. We were 
thereby led to a specific comprehension of the modern asymptotic freedom concept 
that, from the natural philosophy perspective, was made possible only by the 
quantization procedure. From this viewpoint, the particles realizing the cohesion of 
matter are photons, insofar as they need to be described like photons: they must be 
conceived as free particles, at least formally speaking. Particularly illuminating, at 
least for what we have to say here anyway, are the 2004 Nobel lectures of the 
recognized forerunners of the theory of asymptotic freedom – and their different 
works, of course, serving for the foundation of this physical concept – especially 
David Gross’ Nobel Lecture and the presentation slides [21]. 

In order to unveil from the very beginning the natural-philosophical point of 
view, we start with the observation that Max Planck defined the concept of resonator 
in order to account for the equilibrium temperature of the radiation in a physical 
enclosure containing matter and light. Even though Planck presented his choice as 
just an incidental one, the physics ever since tells us another story: his resonator is 
the most convenient concept that could ever serve the purpose of quantization. In a 
word, the resonator is a necessity, not just an incident. Without this choice we are 
not able to construct a thermodynamics of radiation based on the electromagnetic 
theory of light. And, as we intend to show here, there is, indeed, a more general 
theory of radiation necessarily asking for the Planck’s concept of resonator: the 
electromagnetic theory is just a particular case. 

Fact is that, according to Kirchhoff’s laws of radiation, a thermal equilibrium 
can be established in a Wien-Lummer enclosure [53] containing radiation and matter. 
This equilibrium is essential in defining a temperature of radiation according to the 
laws of thermodynamics. However, the Kirchhoff’s laws of radiation are only 
phenomenological: they do not require details regarding the physical structure of the 
matter used in describing this thermal equilibrium. They simply ask for matter as a 
category, respecting only the thermodynamical prescriptions. Therefore, according 
to these laws, we can think freely of any physical structure of the matter in 
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thermodynamical equilibrium with radiation in an enclosure, in order to be able to 

define the temperature of radiation. 

We can think, for instance, of an ideal gas, as Wily Wien once did (see [52] 

for a closer documentation), on the occasion of establishing the radiation law bearing 

his name, i.e., the Wien’s radiation law. This is, in our opinion, the first sign that the 

Kirchhoff’s laws are not quite so general in order to satisfy the thermodynamical 

requirements of thermal equilibrium. More to the point, their generality should not 

stand upon the idea of arbitrariness of the matter structure in equilibrium with 

radiation, but upon the idea of determining that structure in order to realize such an 

equilibrium. For the Wien’s case in point, the ideal gas is the only one liable of 

having an absolute temperature connected to a sufficient statistics – namely, the 

average kinetic energy of the molecular chaos – by its very definition. Then, and 

only then, if a thermodynamical equilibrium is established in an enclosure containing 

gas and radiation, one can talk about the constant temperature of the matter inside 

enclosure, which is measured by the absolute temperature of the gas. Only at this 

point, therefore, can we apply the thermodynamical reasons, to the effect that the 

absolute temperature should also be the radiation’s temperature, considering, of 

course, the light as a physical system submitted to the same thermodynamic laws as 

the matter. This is just the general idea, but in order to get real regarding an 

equilibrium of the two physical “substructures” – light and matter – of the content of 

a Wien-Lummer enclosure, we need to consider the interaction between them, and 

this fact brings complications. 

It is on this occasion when Max Planck used the fact that the Kirchhoff’s laws 

do not require a structure for the matter in the enclosure, as an advantage. To wit, 

he translated the lack of requirement into the liberty of an invention, physically 

decided based on the fact that the light is an electromagnetic phenomenon. Indeed, 

Wien’s ideal gas considerations, on the occasion of establishing his law of radiation, 

were conducted in such a way that they disregarded an important physical point of 

concern: the mechanism of interaction of the matter with radiation. Indeed, in his 

reasoning, Wien resorted heavily on the classical ‘analogy’, “if we may say so, 

between the kinetic energy of molecules and the energy of light, as calculated from 

its intensity”. This allowed him to skip the details of the mechanism of interaction 

that would be able to explain physically the thermodynamical equilibrium. 

On the other hand, Planck’s choice for the fundamental structure of the matter 

in equilibrium with radiation – the resonator – is an electric vibrating dipole, 

instead of just the simple material point of the ideal gas. It was deliberately chosen 

to fill in for such a missing point: the physical details of the interaction of the 

matter with radiation should be explicit, inasmuch as the radiation is 

electromagnetic. Indeed, it was known from Hertz’s electromagnetic theory ([27], 

pp. 137 ff) that such a dipole can absorb and emit electromagnetic light. Thus, 

based on this natural phenomenon, a thermal equilibrium can be physically 

established inside a Wien-Lummer cavity, which is liable to be theoretically 
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described in terms of the electrical dipoles interacting with radiation, by a kind of 
statistical theory. And, to this end, Max Planck even constructed a special statistics 
for describing the physics of this kind of equilibrium: the statistical theory of 
ensembles characterized by probabilities having densities with variance function 
quadratic in their mean values (see [35], §2.3). Reproducing, for conformity and 
documentation, Planck’s own words, the ideas above are expressed as follows: 

… This law (Kirchhoff’s, a/n) states that a vacuum 
completely enclosed by reflecting walls, in which any emitting and 
absorbing bodies are scattered in any arrangement whatever, 
assumes in the course of time the stationary state of black radiation, 
which is completely determined by one parameter only, namely, 
the temperature, and in particular does not depend on the number, 
the nature, and the arrangement of the material bodies present. 
Hence, for the investigation of the properties of the state of black 
radiation, the nature of the bodies which are assumed to be in the 
vacuum is perfectly immaterial. In fact, it does not even matter 
whether such bodies really exist somewhere in nature, provided 
their existence and their properties are consistent with the laws of 
thermodynamics and electrodynamics. If, for any special arbitrary 
assumption regarding the nature and arrangement of emitting and 
absorbing systems, we can find a state of radiation in the 
surrounding vacuum which is distinguished by absolute stability, 
this state can be no other than that of black radiation. 

Since, according to this law, we are free to choose  
any system whatever, we now select from all possible emitting 
and absorbing systems the simplest conceivable one, namely, 
one consisting of a large number N of similar stationary 
oscillators, each consisting of two poles, charged with equal 
quantities of electricity of opposite sign, which may move 
relatively to each other on a fixed straight line, the axis of the 
oscillator. 

It is true that it would be more general and in closer accord 
with the conditions in nature to assume the vibrations to be those 
of an oscillator consisting of two poles, each of which has three 
degrees of freedom of motion instead of one, i.e., to assume the 
vibrations as taking place in space instead of in a straight line only. 
Nevertheless we may, according to the fundamental principle 
stated above, restrict ourselves from the beginning to the treatment 
of one single component, without fear of any essential loss of 
generality of the conclusions we have in view. ([39],  
pp. 135 – 136; emphasis added, n/a) 

Taking up the issues presented here by starting from the end one of this excerpt, 
the history of physics proved, quite contrarily, that the generality was lost, in fact, 
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and even in an important aspect at that: the fundamental structures of the matter in 

equilibrium with radiation are not arbitrary, but they must be dipoles. This is one of 

the essential conclusion of the discovery of the modern asymptotic freedom [21]. 

One can say that the generality can be preserved, indeed, but only from a dynamical 

point of view and, moreover, even by a special formulation of dynamics. This 

formulation contains the equilibrium in a specific way, according to the idea of force 

characterizing a statics, once voiced by Eugene Wigner on the occasion of a 

proposal of some particular foundations of the wave mechanics [54]. However, in 

order to take heed of such an idea, we need to learn some more lessons from the 

physics of light along the lines of Planck’s procedure of quantization. And because 

Procopiu’s procedure of quantization is the only one going along those very lines, 

but specifically in the case of matter not light, we may be allowed to go back to a 

presentation of the essentials of the theory of Procopiu quantization in the most 

notable form of a counterpart of Wien-Lummer cavity [53], involving the forces 

directly. However, these are to be conceived in a special optical medium that 

generalizes the electromagnetic vacuum, but points out to the dipole as a necessary 

fundamental structure in physics, as required by the asymptotic freedom. 

The general natural-philosophical grounds for our approach in constructing a 

counterpart of Planck’s ideas expressed in the previous excerpt, but with application 

to the case of matter, are as follows. First, notice that in the very Planck’s expression, 

the content of a Wien-Lummer enclosure in the problem of radiation is, so to speak, 

‘a piece of vacuum’. Then, nothing appears as more natural than taking the 

fundamental unit of matter imagined by Planck as necessary in solving the problem 

of radiation – the Planck’s resonator – as “a piece of vacuum having two electric 

charges at the ends”. This is, indeed, just the definition of an electric dipole in the 

Katz’s natural philosophy of charge (see [34], §3.1); for conformity, see also the 

original [30]). Then, according to the same natural philosophy, the correspondent in 

matter of the Planck’s resonator should be, simply, «a piece of matter having two 

magnetic charges at the ends», i.e., a magnetic dipole, which we propose to call a 

Procopiu’s resonator, in view of the fact that the Procopiu’s quantization is a 

quantization in the case of matter that completely parallels that of Planck’s from the 

case of light (see [35], passim). The hard part of such an analogy would then be not 

conceiving the resonator because this is readily available to our intellect, but 

conceiving the equivalent of a Wien-Lummer cavity “completely enclosing matter”. 

However, according to the very same natural philosophy of Katz for charges, this 

concept seems to have been exercised by the human intellect for ages. Indeed, by 

“duality”, as it were, we can think that this should be “a matter enclosed by reflecting 

walls”. If these reflecting walls are taken, by the very same “duality principle”, as 

made from “vacuum” – replicating the reflecting walls of Planck, which are made 

from “matter”, obviously – we get the well-known image, largely utilized in 

theoretical physics, of an isolated extended particle, standing alone in a universe. 
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One can say that this is the kind of physical particle that can be described by 
the first quantization procedure ever. It can be defined, according to the precepts of 
special relativity, as a genuine ‘instanton’ (see [35], Chapter 4, especially §4.4): a 
collection of simultaneous events described by a sl (2, R) Riemannian manifold. The 
present work gives, by and large, the essential mathematics helping to understand 
the physics of such a natural philosophy, but from the perspective of the modern 
asymptotic freedom concept. 

2. THE RESONATOR AS A FUNDAMENTAL PHYSICAL STRUCTURE 

Regardless the category whose physical structure it explains – and talking of 
category we have in mind a kind of Kantian use of the concept, meaning specifically 
matter and light here, taken as two different categories – the resonator has, according 
to Katz’s natural philosophy of charges, the very same fundamental physical 
structure: a dipole; electric, representing the matter in the case of light, respectively 
magnetic, representing the light in the case of matter. And while we are along this 
path of mending the philosophical meaning of categories, let us notice that the 
vacuum is a category, too: it is taken here as meaning the absence of matter, 
according to the physical definition of this concept. This objectively means matter 
interpreted by particles having Newtonian forces between them, in order to be 
conceivable as ensembles of particles in equilibrium. From this point of view it is 
important to notice that matter and light are two opposite categories: the physics, 
mainly that of the last century, has established that they go into one another when 
disappearing. Neither of them goes into vacuum. The dipole will be presented here, 
mathematically, as a metric structure regardless of the idea of interpretation: a 
property of the geodesics of a special Riemann manifold of positive curvature. The 
general incentives for such a presentation come, by and large, from the Louis de 
Broglie’s theory of optical ray (see [5], especially [5b] and [5c]) serving for 
completion of the Fresnel’s physical theory of light, by proving its harmony with the 
quantum concepts (see [34], Chapter 2, §2.1). 

2.1. THE GENERAL THEORY OF AN OPTICAL RAY 

The first problem to be solved in the de Broglie’s order of things physical 
– for, this is, indeed, an order set forth by an analysis of the work of Louis de 
Broglie (see [34], passim) – is that of some theoretical requirements for the 
physical description of a light ray. To start with, one needs to know the equation 
of progression of the phenomenon of light along an optical ray, i.e. a 
mathematical description of the propagation phenomenon from the point of view 
of the ray theory. The mathematical point of view in the natural-philosophical 
requirements on propagation of light is usually represented via a local 
displacement in an arbitrary direction from a point along the ray, which thus 
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decides the ray path. The mathematics is, again usually, handled by the so-called 
Euler-Lagrange equations describing the displacement according to the idea that 
the real path of the light is corresponding to an extremum of the optical path, 
defined as (see, e.g., [48,49]; these are the works we follow here, anyway): 

 
(2.1.1) 

where (ds)2  dxdx is the square of arclength of the corresponding geometrical 
path, i.e. of the path in the empty space hosting the optical medium of refraction 
index n(x), assumed to be Euclidean. The variational problem associated with the 
integral from equation (2.1.1) – the Fermat’s principle – provides the differential 
‘equation of motion along the ray’, where the geometrical path length is playing 
the part of ‘time’ of motion. From this perspective, therefore, the motion 
represents a propagation, whose time is represented by the geometrical path 
length from a position to another, as in classical optics, where the light is assumed 
to propagate through free space. The differential equation is: 

 
(2.1.2) 

This demands a little explanation from our part, mainly regarding the ket 
notation. 

In this kind of optical problems, the geometry is dealing with coordinates of 
location only. Thus, what is meant by the symbol x, as well as by x, is a set of three 
coordinates in space, locating the positions in a Cartesian reference frame. Only, the 
Dirac’s notation suggests an algebraic realization of the vector as a  
31 matrix, i.e., a matrix with three lines and a column. In the cases where the 
reference frame is unique in space, like in path optics, there is no difference in 
meaning between the two notations. Such a difference occurs only when the 
reference frame changes along the path, and it is important for the global geometry 
involved in the optics of light, in that the geometrical quantities of physical interest 
are the torsions, not the curvatures as usual [8]. 

For now, though, coming back to our trail of discussion here, regarding the 
classical optics, after working on the algebraical expansion of the equation (2.1.2), 
we end up with the differential equation: 

 (2.1.3) 

Here, the accent means differentiation upon s, and a dot between vectors means 
the regular dot-product of the vectors. Assuming a functional form of the refraction 
index of the medium, will give us the properties of propagation in that physical 

I 
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n(x, y, z)  dx dx

d
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n(x) d
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 n(x)

n(x) x  (n(x)  x ) x  n(x)
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medium – if it exists at all – described by that refraction index. To wit, let us choose 
a refraction index having the functional form: 

 
(2.1.4) 

where xx is the sum of squares of the coordinates along the path of light. The 
coordinates are taken here in a form scaled with reference to some gauge lengths, in 
order to maintain the spirit of Fresnel’s physical theory of light, whereby the 
coordinates are to be considered pure numbers, so that the notation makes sense for 
now, from a mathematical point of view. The equation (2.1.3) then becomes: 

 (2.1.5) 

Using the definition of the elementary arclength of the path in terms  
of coordinates, which we take a priori as Cartesian, obviously in an – again, assumed 
– Euclidean background space, we have: 

(2.1.6) 

Then, by differentiating the last equality, we get the relations: 

 
(2.1.7) 

that can be used in order to conclude on the equation (2.1.5). First, by differentiating 
the very equation (2.1.5), we have: 

 (2.1.8) 

whence dot-multiplying this by x and using the first relation from (2.1.7), we get: 

 
(2.1.9) 

Geometrically, this means that the curvature of the ray path should be constant 
for this kind of continuum, for the curvature of a geometrical path is in fact measured 
by the second derivative of the coordinates along that path. Returning then to (2.1.5) 
once again, but this time for dot-multiplying it by x directly, while using the first 
of the results (2.1.7) and the result (2.1.9), gives: 

n(x)  1 x x 1
 n(x)  2 1 x x 2

x

1 x x  x  2 x x x  2 x  0

(ds)2  dx dx  x x (ds)2  x x  1

x x  0, x x  x x  0

(1 x x ) x  2 x x x  0

x x  0  x x  const
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(2.1.10) 

where R is a non-dimensional constant, suggesting, again, the necessity of a gauge length 
in defining the curvature. As we shall see, this observation is of tremendous importance 
in deciding upon the definition of one of the most important concepts of physics, the 
frequency, based on the phenomenon of holography. Bluntly put, the frequency is, 
indeed, defined as a measure of curvature. For now, though, just inserting the first 
relation (2.1.10) into equation (2.1.8) produces one final equation: 

 
(2.1.11) 

This is the “genuine optical occurrence”, as it were, of a third order linear 
differential equation which is liable to describe the concept of Hooke’s light ray (see 
[35], §3.2, equation (3.2.14); for conformity see [28], pp. 55–65). However, more 
important for a theory of matter to which that old concept is referring, (2.1.11) 
describes the dynamical necessities of the regularization theory for the Kepler 
motion [see [35], §3.4, equations (3.4.9) and (3.4.18)]. This last instance comes 
down to considering the space occupied by the center of force in the Kepler 
dynamical problem as an optical medium of this sort. 

While these tasks will be gradually accomplished as we go along with our work, 
for now we have a general observation that needs to be made in order to properly guide 
the work itself. Namely, the optical medium described by the refraction index from 
equation (2.1.4) should be considered a Riemannian manifold which turns out to be of 
finite volume having positive curvature. Thus, it can play the part of a Wien-Lummer 
cavity in the thermodynamics of light studies: we have, therefore, a theoretical model 
of this experimental device, described as a Riemannian space. Recall, once again, that 
such a cavity was, and still is in fact, the device of experimental study of the light from 
a thermodynamic point of view, serving in obtaining the right laws of radiation. 
Modern high-tech researches point out to the important fact that the universe we 
inhabit can be taken as such a device [14]. 

Going for some details along the line pinpointed in the previous excerpt from 
Planck, the Planck’s ‘vacuum’ is represented here by a transparent continuum, 
having the refraction index given by the equation (2.1.4), counting geometrically as 
a Riemannian manifold of positive curvature. Indeed, the elementary optical path of 
this medium is conform-Euclidean, assuming that dxdx is Euclidean, as we did. 
When introducing two suitable parameters a, b in order to characterize the Euclidean 
shape of the piece of matter representing this medium, the regular geometric form of 
the metric becomes [6]: 

2 x x
1 x x

 
1
R2 , x x 

1
R2

x 
1
R2 x  0
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(2.1.12) 

Here we have applied the equation (2.1.1), used to establish the optical path 
definition, in its infinitesimal instance, of course, so that ds is the elementary optical 
path. 

This is the metric of the realm called Maxwell fish-eye, and is especially 
interesting for us because it has circles as geodesics, with the property of an electric 
dipole’s lines of force: all the geodesics passing through any point of the realm in 
any one of its two-dimensional sections, also pass through a point which is its 
transform by reciprocal radii with respect to an appropriate sphere. That is, optically 
speaking, the Maxwell fish-eye is a perfect device in which all light rays through a 
point have the properties of the lines of force of an electric dipole: circles passing 
through two fixed points representing the locations of the two component charges of 
the dipole (see [48], Chapter IV; [49], §§1.6, 1.7 and 2.9). 

Should the necessity occur to operate an interpretation here, in the manner 
required by the wave theory of light [11], it obviously needs to be accomplished by 
particles having electric charges. However, these electric charges can have any 
values: they are not necessarily quantized. Case in point, they must have the Lorentz 
property, but in its utmost generality. To wit, in order to acquire a charge of opposite 
sign, a certain position from such a medium needs to be replicated by inversion with 
respect to a certain, locally spherical surface (see [32]; §§57 and 67; see also [34], 
§3.2 for details). That spherical surface is, according to Lorentz, the only ‘bearer’ of 
zero charge particles. In general, we can have here the property of a physical lens, as 
it were, characteristic to a portion of a surface, which can be differential, as well as 
fractal. 

Let us show some details of these statements, first because, physically speaking, 
the theory contains the fundamental structure required by Planck’s quantization 
procedure just naturally, but also because we need to be fairly familiar with the 
details of the procedure in view of its application in the theory of embeddings (we 
follow here [6], §73). These details involve the space embedding into a four-
dimensional Euclidean manifold. Again, as we shall see here, this four-dimensional 
manifold is of essence in physics, in general. For a good guidance on the topic, so 
much the better as this guidance is offered in connection with classical non-
Euclidean geometries, we recommend the exquisite work of Ruben Aldrovandi and 
José Geraldo Pereira on Geometrical Physics, especially Chapter 23 of that work [1]. 
As, further on, the embedding procedure involves the stereographic projection, 
which is of essence in constructing the counterpart of Planck’s resonator in matter – 
the Procopiu’s resonator, as we would like to call it – one may need a previous 
accommodation with this kind of projection. We recommend a geometrically 
thorough presentation of the stereographic projection method – analytic as well as 

(ds)2  4a2b2
dx dx

(b2  x x )2
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synthetic geometry – which is made in the booklet [43]. Now, back to our line of 
discourse. 

According to Constantin Carathéodory, the parameters a and b, that we have 
introduced previously, have the following meaning: the metric (2.1.12) is the metric 
of a three-dimensional manifold in a four-dimensional space, analytically 
represented by a four-dimensional Euclidean sphere of radius a, projected 
stereographically onto a three-dimensional Euclidean space at the distance b from 
the center of the projection. This can be shown by the following analytical procedure. 
Start with the observation that the equation of a Euclidean four-sphere in Cartesian 
coordinates , , ,  is, by analogy with the three-dimensional case: 

 (2.1.13) 

and the three-dimensional stereographic projection on one of its Euclidean tangent 
hyperplanes, from a point located at the distance b with respect to that hyperplane, 
is achieved by the formulas: 

 
(2.1.14) 

Introducing these coordinates in (2.1.13), we get an equation that can be solved 
right away, giving two values of n: 

 
(2.1.15) 

Here r2  xx is the Euclidean norm of the position vector of the projected 
point from the tangent hyperplane. The first one of these values,   a, corresponds 
to the “south pole” of the hypersphere (2.1.13) – the “north pole”,  
  a, being the point of contact of the hyperplane (x, y, z) with the hypersphere – 
where the correspondence realized by equation (2.1.14) is singular. On the other 
hand, though, the second one of the values (2.1.15) corresponds to the projection of 
the current point of coordinates (, , , ), onto the “north pole” hyperplane,   a, 
thus helping in representing the current point by a point in the “tangent” Euclidean 
space in coordinates (x, y, z). According to equation (2.1.14), this representation is 
provided by the formulas: 

 
(2.1.16) 

 2 2  2  2  a2


x


y


z

  a

b
: n

n  0, n  2ab
b2  r2

  a 2bx
b2  r 2 ,   a 2by

b2  r2 ,   a 2bz
b2  r 2 ,   a b2  r 2

b2  r 2
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which can be readily solved for (x, y, z), and provide the Cartesian coordinates by 
the following ratios: 

 
(2.1.17) 

Now, using these last two equations, we can construct the four-dimensional 
Euclidean elementary distance of the ambient space, as an Euclidean metric: 

 (2.1.18) 

which turns out to be the metric (2.1.12). 
Going a little bit ahead of us here, we see these mathematical results the 

following way: the Maxwell fish-eye is an optical medium describing the matter in a 
three-dimensional Euclidean space where the light dwells. The matter in this space is 
itself a Riemannian manifold, having the metric (2.1.18), which is conformal with the 
Euclidean metric in three-space of our experience, as in equation (2.1.12). The problem 
is not what the three-space represents, because we know this from that experience, but 
what the coordinates (, , , ) are, and an answer presents itself right away: they are 
charges. This is a story first told to us by the geodesics of the conformal metric (2.1.12), 
which are lines characterizing the field of dipoles: either electric or magnetic. On the 
other hand, any two of the four coordinates (, , , ) can be associated with each 
other, in order to give either the square of an electric charge or the square of a magnetic 
charge according to Katz’s natural philosophy (see [34], §3.1). The association is, a 
priori, a stochastic process and, as we shall show here, has everything in common with 
the stochastic type of processes once imagined by Carlton Frederick for the metric 
tensor of the spacetime [16]. So, we may say that the equation (2.1.13) represents here, 
by and large, an electromagnetic continuum split into charges by the procedure of 
embedding a three-dimensional Euclidean manifold. 

This is a ‘device’, realized, in the case of light, by a Wien-Lummer matter 
cavity enclosing light and matter – this last category in the form of a physical 
structure made of Planck’s resonators – in thermal equilibrium. In the case of 
matter, on the other hand, it should be realized by the ‘dual’ of this device, as it 
were: a vacuum-made cavity containing the matter to be quantized – a category 
that cannot have but a physical structure made of Procopiu resonators – in 
thermal equilibrium with light, which is a category that cannot have but a 
physical structure made out of dipoles, whose nature remains yet to be 
established. In any case, details aside, the quantization procedure must be that of 
Planck. It pays to notice the different roles played by light in the two situations: 
as we shall see, this is the reason for the fact that we have today the concept of 
Yang-Mills fields. 
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2.2. THE WIEN-LUMMER ENCLOSURE FOR MATTER 

We will work here on some details of an example in three space coordinates, 
in order to get the grip on some well-known cases, which serve theoretically just for 
guiding purposes: afterwards, though, we can frame easier the previous four-
dimensional case of the charges, which is of the same nature. Thus, we have a sphere 
centered in origin and radius R: 

 (2.2.1) 

to be projected onto the upper tangent plane 3  R (the so-called north pole) from 
its center. If (x, y, R) are the coordinates of the point in plane upon which the point 
of coordinates (1, 2, 3) of the sphere is projected from origin, then this projection 
is described by the system of equations: 

 
(2.2.2) 

where  is a parameter. Now, if the Euclidean metric of this continuum reproduces 
the signature of the quadratic form (2.2.1), then in terms of the coordinates of the 
plane we can write it as: 

 
(2.2.3) 

Using (2.2.1) and (2.2.2) for calculating , we get: 

 
(2.2.4) 

so that the metric (2.2.3) becomes: 

 
(2.2.5) 

Is this truly a metric in the geometrical sense, i.e. the elementary distance 
measure in space? The answer is affirmative: it is, indeed, the infinitesimal Euclidean 
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distance in the three-dimensional space, calculated with the so-called Laguerre’s 
formula, involving the logarithm of a cross-ratio. It is, obviously, realized as a metric 
in the two-dimensional case, i.e. on a surface. Let us get into some details. 

To wit, if we denote by X a point in this space, then a coordinate representation 
is given by a triple of numbers representing the point in the sense of Cartan: 
memorize them somehow, and then carry them everywhere and realize the position 
in any place via an adequate reference frame [8]. A slight change in notation seems 
in order here, to the effect that the lower indices will be assigned to points, rather 
than to coordinates, which are to be taken as Cartesian coordinates: 

 (2.2.6) 

Note, in this association, that X should not necessarily be taken as a vector: it 
is just a triple of numbers. This means that we shall build the geometry based on the 
properties of the quadratic form from the left hand side of equation (2.2.1), using, 
however, the properties of this quadratic form as we know them from the regular 
geometry: 

 (2.2.7) 

Thus, the condition to have X as a real point in space is (X, X)  0, even if 
this quantity is unspecified by the metric idea of a sphere in space, or something 
like that. By contrast, the condition (X, X)  0 defines, from a geometrical point 
of view some purely imaginary points. However, from a physical point of view, 
such points can be only ‘partially’ imaginary, so to speak. The physical 
interpretation depends on the condition (X, X) = 0, and this can always make 
sense in physics, pending a condition of quantization. For instance, it can 
represent the condition of equilibrium of Newtonian forces within the static 
ensembles of particles serving for interpretation. Then stochastic processes can 
be defined in order to assimilate the fundamental physical quantities generating 
the three forces with lengths, serving to realize the Cartanian program [8]. The 
stochastic processes are defined by specific Lewis-Lutzky invariants, and thus 
they realize the necessary memory serving for accomplishing the program. In this 
specific case only the mass can be imaginary, and in microcosmos, where the 
charges prevail by their Newtonian forces it is, indeed, always imaginary (see for 
details [34], §§3.1 and 4.3). 

In order to construct an absolute geometry based on these considerations (see 
for details and discussion [31]) we take the quadratic form (2.2.7) as a norm for the 
points in our space of points. It induces an internal multiplication of points (a dot-
product, as it were) by the polarization process: 
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(2.2.8) 

with an obvious correspondence between indices of points and indices of the 
corresponding coordinates. This dot-product, entirely analogous with the classical 
Euclidean dot-product, helps us in characterizing a straight line in space, which is 
the essential concept necessary in constructing a metric. The straight line joining two 
points X1 and X2 is, like in the regular Euclidean geometry, the locus of points: 

 (2.2.9) 

with λ and μ variable numbers representing the homogeneous parameters of points 
along the line. This straight line intersects the absolute (X, X) = 0 in two points, 
having the homogeneous parameters partially determined – meaning: up to an 
arbitrary factor – by the quadratic equation: 

 (2.2.10) 

That is, we can determine only the ratios of these two parameters – the non-
homogeneous coordinates along the line – as the roots of this equation, viz.: 

 
(2.2.11) 

As it turns out, these two ratios are enough for our purpose of building a metric 
of the space. 

Indeed, in geometry, a metric is, in fact, the distance between two 
infinitesimally close points, so that what we need first is to define a distance 
between points. Now, the quantity that reduces to the distance between two points 
in the Euclidean case, turns out to be the cross ratio of four points on a straight 
line: two of these points are fixed and used as a reference frame on the line, while 
any other pair of points is the current pair of points between which we calculate 
the distance. With reference the the straight line defined by equation (2.2.9), the 
two points having the parameters from equation (2.2.11) can be taken as the 
reference frame. Then the distance between X1 and X2 is, up to a numerical factor, 
the logarithm of this cross ratio (the so-called Laguerre’s formula). For, given 
two points X1,2, the straight line joining them contains all points of the form X = 
tX1  X2, forming the continuum whose geometrical form is that line. In order to 
define the distance between the two points, we can choose arbitrarily two other 
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points, X3,4 say, to play the part of the reference frame on the straight line. Then 
the cross ratio of points on line is simply defined as the cross ratio of the 
corresponding non-homogeneous parameters t. So, we have: 

 
(2.2.12) 

The Laguerre distance is simply proportional to the logarithm of this quantity, 
the coefficient of proportionality being a universal constant for a given geometry. It 
depends, of course, on the second pair of points, which is also our choice, and 
therefore may be deemed as subjective on occasions – thus suggesting a possible 
ambiguity – but  this ambiguity can be substantially reduced if we refer the 
construction to the absolute of space: this is a sphere, and a straight line in space 
always intersects a sphere in two points. In this case, we notice first that, according 
to equation (2.2.9), the parameter t has the values t2  0 for the point X2 (i.e.   0), 
and correspondingly, t1  ∞ for the point X1 (i.e.   0). In view of this, the cross 
ratio (2.2.12) takes the simple form of a ratio: 

 
(2.2.13) 

upon which our choice for the two points X3 and X4 reveals the advantage of allowing 
a standardization, as it were, of this construction. Namely, disregarding the 
algebraical nature of the two numbers t3,4, one can say that every pair of points in 
space has a corresponding pair of points on the absolute, these being the points where 
the corresponding straight line passing through those points intersects the absolute. 
These are real if the straight line meets the absolute, identical if the straight line is 
tangent to absolute, and complex if it does not touch the absolute. If the two points 
X1 and X2 are both inside the absolute, then the numbers t3,4 must be real, no question 
about that. Thus, the corresponding parameters t3,4 are then given by the two ratios 
from equation (2.2.11), so that equation (2.2.13) becomes: 

 
(2.2.14) 

This ratio, however, is a complex of unit modulus so it cannot serve the 
intended purpose, which requires reality of the distance. The conclusion can be 
ascertained from the fact that the quantity under the sign of square root is always 
negative for real vectors in the Euclidean space. Nevertheless, according to Felix 
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Klein, even with this cross-ratio, we can still construct a differential version of the 
distance by Cayley’s method, viz. a metric of space [31]. Indeed, the distance 
according to Laguerre’s formula is only proportional to the logarithm of the cross 
ratio, and therefore it involves an arbitrary constant. The logarithm of the cross ratio 
from equation (2.2.14) is a purely imaginary complex number, so that, if we choose 
the proportionality constant as an imaginary complex number the things are in order. 
Thus, the Laguerre distance given via the logarithm of the cross ratio (2.2.13) can be 
represented by the distance given via the logarithm of cross ratio (2.2.14), because 
the ratio of the two expressions involved in equation (2.2.14) is a purely imaginary 
complex number, and we are at liberty to choose an imaginary number as the 
constant defining the Laguerre distance. 

Assuming, therefore, that in order to define the metric the two points X1 and X2 
are infinitesimally close X1  X, X2  X  dX, just like in the regular Euclidean 
geometry, we can calculate the necessary factors in equation (2.2.14) as: 

 (2.2.15) 

Now, in the real domain, we can accept that the quantity (X,dX)/(X,X) is an 
infinitesimal quantity of the first order, while (dX,dX)/(X,X) is an infinitesimal 
quantity of the second order. Thus, the cross ratio (2.2.14) can be expanded and, to 
first infinitesimal order it is: 

 
(2.2.16) 

The logarithm of this quantity is, to the same infinitesimal order, the second 
term from the right hand side, which is, of course, a purely imaginary number, 
as we just said. Then, we can set things in order by Klein’s recipe: multiply the 
logarithm with a purely imaginary constant quantity, iR say, in view of the fact 
that the metric per se is defined up to an arbitrary scale factor. Thus the Cayley-
Klein – or absolute – metric of this geometry can be finally written in the form: 

 
(2.2.17) 

with R an arbitrary real quantity. This equation is a regularly considered form of the 
Cayley-Klein metric, with reference to any absolute of space. It turns out that this 
expression is also valid in larger conditions of space definition: complex points, 
general definition of the absolute as a quadric in this space, etc. Dan Barbilian, to 
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mention a notable case, used it for the cases where (X,X) is a homogeneous 
polynomial of arbitrary degree – a quantic, in algebraic phraseology – thus 
generalizing the metric (2.2.17) even further [2]. 

However, as long as the absolute is a quadric – i.e., a general surface specified 
by an equation quadratic in the coordinates – using the properties of the dot and cross 
products of the real vectors in space, the metric (2.2.17) can be written in the form: 

 
(2.2.18) 

with 

 

Notice that this metric reduces to that from equation (2.2.5), given by 
projection, for z  R. Therefore, the previous results – that is, the ones that we can 
get via the method of projection – are also obtainable as absolute geometrical results, 
just by assuming that one of the coordinates – usually z – is constant: this time, 
though, the constant is not quite arbitrary, but needs to have specifically the value R. 
In such a case, we have: 

 
(2.2.19) 

and, if we apply to this the formula (2.2.18), we get the result: 

 
(2.2.20) 

This result, no question, coincides with the one from equation (2.2.5) up to a 
factor, but reveals an interesting position of the metric of a Maxwell fish-eye (2.1.12), 
which is the three-dimensional extension of (2.2.20). This hints to the universality 
of such a metric, at least from a physical point of view. Discussing, however, on the 
two-dimensional case in hand, if we work on the last term of the expression from the 
right hand side of equation (2.2.20) we can write it in the form: 
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revealing a great advantage in the cases where the Kepler’s law of the areas is valid 
in the plane (x, y). However, regardless of such an occurrence, the equation (2.2.20) 
can then be written in the form: 

(2.2.22) 

showing that, in cases where  is constant, the Cayley-Klein metric basically differs 
by only the square of an exact differential from the Maxwell fish-eye metric. 
Therefore, in particular, this may be the case if have tanh2d  constant times a 
differential, which can be seen as a second of Kepler laws, as we said, defining the 
time scale in the sense of regularization theory (see [35], §3.4). Such a case will be 
discussed as we go along with our developments in this work. The transcription 
(2.2.22) has only the purpose of revealing the position of the Maxwell fish-eye metric 
in context, nothing else. For, if we homogenize the notation from equation (2.2.22), 
extending it also to the first term from the right hand side, we get the final form of 
the absolute metric as: 

(2.2.23) 

which, by itself, is liable to explain the Langevin statistics used in realizing 
Procopiu’s procedure of quantization (see [35], §2.4 for details). 

It is, in this connection, worth disclosing right away the usefulness of the 
expression (2.2.23), if for nothing else, just for fostering the casual reader’s curiosity. 
Assume that, for some reason, the parameter  is constant indeed. We can realize the 
importance of such an occurrence in case this parameter is connected with a time 
scale change, as in the second of Kepler’s laws. Then, a reason presents itself 
immediately for such an occurrence, based on physical facts: the time “freezes”, as 
it were, and we have to deal with an enclosure containing simultaneous events. In 
other words, in this case, we have to deal with an instanton sui generis: a piece of 
matter, made of simultaneously existing physical structures. The metric (2.2.23) then 
reduces to an exact differential: 

 
(2.2.24) 

representing the elementary probability of a Hyperbolic Secant type ([35], §2.4). 
This type of probabilities is connected with the “magnetic” Langevin statistics which 
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is of essence in realizing the Procopiu’s quantization in matter, along the same lines 
of realization as those of the archetypal Planck’s quantization. The correlation 
function of their probability densities is the partition function of the Langevin 
distribution [loc. cit. ante, equations (2.3.7) and (2.3.10)]: 

 
(2.2.25) 

Therefore, according to Katz’s natural philosophy of charges, such an instanton 
can be described as a matter structure in equilibrium with light – this one being 
described by an ensemble of Procopiu resonators – isolated within a Wien-Lummer 
cavity ‘made’ of vacuum. One can say that the Cayley-Klein, or absolute geometry 
is the geometrical image of this physical situation, and this concept has a real 
advantage: the geometrical crossing of the absolute can be naturally viewed as a 
representation of the modern physical concept of vacuum tunneling [29]. 

2.3. THE FREQUENCY: A GENERAL DEFINITION OF HOLOGRAPHY 

The basis of Louis de Broglie’s result regarding the correlation between the 
amplitude of an optical signal and the density of the optical medium supporting it, in 
his case of interpretation of light (see [34], §2.1), is the fact that the optical amplitude 
of the wave equivalent with a particle is independent on time, and that the optical 
signal has a perfectly determined optical frequency, with a phase which is function 
only of space coordinates: 

 
(2.3.1) 

[loc. cit. ante, equations (2.1.2) and (2.1.16)]. A case may be made then, based, 
however, on historical facts only, that the phenomenology of light involves four 
phenomena in order to construct the physics along the classical concept of the 
light ray. For, the classical light ray requires interpretation, and the interpretation 
needs a concept of particle, available to optics only by the idea of Louis de 
Broglie. 

Let us restate the problem again, this time just in order to create a 
perspective. The physical description of light is commonly presented as having 
started with a single one of the phenomena characteristic to light. For instance, 
the initial properties of light were described based on reflection. Adding 
refraction led the intellect to appreciate the crystal physics, and made possible a 
quantitative characterization of Hooke’s idea of periodicity of the light 
phenomenon, by the concept of wavelength and associated frequency. This last 
concept helped in characterizing the light when the addition of the diffraction 
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phenomenon to the phenomenology of light became critical, in the times of 
Fresnel. More importantly though, the diffraction in the phenomenology of light 
led to the discovery of the fourth phenomenon of this specific experience: 
holography. 

Indeed, if the diffraction was a known phenomenon – basically meant to be 
known in order to be avoided in the classical theory of light rays – we certainly 
cannot say the same about holography: the man was completely unaware of it 
before quantum theory surfaced for our intellect, so it was practically discovered. 
However, today we are forced to recognize that this phenomenon is, indeed, part 
and parcel of the phenomenology of light. Then we seem to be entitled to ask: 
what definition of the frequency should be used when starting with the 
holographic phenomenon instead of diffraction, or reflection, or refraction, in the 
physical description of the light? In answering this question, we have a 
“crossword clue”, as it were: certainly, the classical concept of frequency used 
the idea of wavelength in order to be defined, and this, in turn, was extracted 
from experiments with crystals, involving therefore the reflection and refraction 
phenomena in finite spaces. On the other hand, the idea of a hologram came to 
being also inspired by the physics of crystals [17]. This suggests that the concepts 
to be targeted by starting with holography in the physics of light are the 
wavelength and the frequency. However, the modern concept of light is, as a rule, 
theoretically explained based on the idea of harmonic oscillator, whereby the 
measurements results are represented by signals, mathematically thought of as 
functions of time. Within this circumstance, the concept of frequency can be 
understood from the perspective of holography, along the following lines. 

Like the classical velocity, that can be assigned only via the uniform motion of 
a material point, the frequency can only be assigned via the idea of a periodic motion. 
This means a spatially finite motion of a material point, which, therefore, cannot be 
free. Indeed, the physical prototype of a periodic motion – counting as the analogous 
of a free particle for the uniform motion, as it were – is the harmonic oscillator, 
mathematically described by an ordinary second-order differential equation: 

 (2.3.2) 

Thus, assigning a frequency to a signal that can be represented as a periodic 
function of time is a particularly simple task here, for it is provided by the above 
equation in the form: 

 
(2.3.3) 

suggesting a curvature-connected to the function x(t). This definition hardly satisfies 
the idea of uniqueness of the frequency. Besides, the overwhelming majority of 
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physical cases of signals are, in fact, not so simple, in order to be represented directly 
as harmonic oscillators: a complex signal asks, for instance, to be modeled by a 
Fourier series of virtually an infinity of harmonic oscillators of different frequencies, 
in order to be physically described. As a matter of fact, this is the reason why the 
assumption of a direct time dependence of the coordinates created so much trouble 
along the history, up to the point of a change in physics. To wit, it is sufficient to 
recall that the idea of Fourier series imposed an overturn of the established values of 
our intellect, by the emergence of the quantum mechanics [26]. 

In the case of light, though, the phenomenon of holography could not enter the 
phenomenology but only after admitting that the time dependence of the coordinates 
has to be mediated by a phase. Mention should be made of the significant 
circumstance that the realization of importance of this decision – namely that the 
time dependence should be mediated by a phase – came long after the de Broglie’s 
realization of quantization in matter, and usually counts, for our intellect, as the most 
important consequence of the quantization procedure. However, the first incentives 
of the construction of a hologram are referring precisely to the concept of phase, not 
the frequency. Quoting: 

It is customary to explain this (the Bragg’s method of reconstruction 
of a lattice by diffraction, the source of Dennis Gabor’s inspiration in 
devising his method, a/n) by saying that the diffraction diagrams contain 
information on the intensities only, but not on the phases. The formulation 
is somewhat unlucky, as it suggests at once that since the phases are 
unobservables, this state of affairs must be accepted. In fact, not only that 
part of the phase which is unobservable drops out of conventional diffraction 
patterns, but also the part which corresponds to geometrical and optical 
properties of the object, and which in principle could be determined by 
comparison with a standard reference wave. It was this consideration which 
led me finally to the new method. ([18], our emphasis, a/n) 

That ‘standard reference wave’ had to have a different phase, but the very same 
frequency: with the expression of Gabor himself, it has to be ‘monochromatic 
coherent’. Without further ado about it, we see in the excerpt above the necessity of 
intervention of the phase in the expression of the amplitude: for, certainly, the 
measurements of light cannot be made but by the mediation of amplitude, once they 
are always based on the measurements of intensity. Then the basic principle of 
holography can be simply described mathematically as follows: it is the phenomenon 
occurring when we try to associate a time dependence to a physical process depending 
on time, however, not in an obvious periodic way, but implicitly, through the phase. 
The association of a frequency with light phenomenon then involves an ensemble of 
phases, which, from an optical point of view, means an ensemble of waves carrying 
the same information, in particular information about the same object. 
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In order to make this statement more graspable, let us describe the way this 
association is done mathematically. In the general case, when suspecting a periodic 
behavior of the phenomenon, we can try to model it by an equation representing an a 
priori periodic form. This is certainly the general case of modeling via periodic functions, 
which comprises the oscillator as a particular. A typical signal of this type is: 

 (2.3.4) 

which involves a phase  and an amplitude A, both arbitrary functions of time. This 
process is, indeed, a priori periodical, i.e. periodic in the trigonometric sense, 
however not in time directly, as it has not an obvious frequency associated to it, as a 
periodic process of the oscillator kind has. If there is a frequency involved here, as 
Gabor’s idea of standard reference wave asks for, it can only be exhibited if q(t) 
represents a periodic motion of the kind described by equation (2.3.2). Assuming, 
therefore, such an equation for the signal q(t), leads us to some identifications: 

 

(2.3.5) 

The second one of these equations from the right hand side here, gives right 
away: 

 (2.3.6) 

which is a kind of Kepler’s second law, known as the area law, and suggesting a 
periodic motion for the amplitude itself, when compared with the details of the 
Kepler problem. Of course, here this means that we shall need a kind of interpretation 
of this amplitude, and such an interpretation involves the classical idea of free… 
oscillator. That this is the case can be shown right away, since in these conditions 
the first of the equations (2.3.5) gives an Ermakov-Pinney equation for the 
amplitude: 

 
(2.3.7) 

where R0 is a real constant. The connection with the periodic motion per se is then 
the following. Let A be the composite amplitude of a two-dimensional harmonic 
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oscillator, described by a quadratic form in the partial amplitudes of component 
signals varying in time according to the equation of q(t) from (2.3.5), i.e., in 
particular: 

 
(2.3.8) 

This amplitude satisfies the equation (2.3.7) with R0 the constant from (2.3.6). 
Thus, the frequency 0 is asociated to the components of the vector A in an obvious 
way, inasmuch as they are oscillators. In these conditions, though, one can calculate 
right away that the square of amplitude – that is, the intensity of signal in optical 
terms – from equation (2.3.4) satisfies a linear third-order differential equation of 
known type: 

 
(2.3.9) 

Comparing this equation with the one of a ray from (2.1.11), a conclusion imposes 
by itself, namely that Louis de Broglie was right after all: the equation characterizing an 
optical ray is referring, indeed, to the square of the amplitude of an optical signal. Then, 
because the square of the amplitude of recorded signal is, according to de Broglie, the 
numerical density necessary for an incidental interpretation, the equation (2.3.9) should 
also be taken as an equation for that density. 

It may appear that, with this conclusion, we are rushing in a little, ‘where 
angels fear to tread’, as they say. For once, the kind of ray described by a refraction 
index (2.1.4), which asks for an equation like (2.1.11) or (2.3.9), may not be 
universal, at least not to the same degree as the equation (2.3.4) for the 
mathematical model of a signal appears to be. The optical medium, described by a 
particular refraction index, as given in equation (2.1.4), may be very particular 
indeed. However, it is worth recalling that this kind of ‘particular’ is just 
mathematical here: from a physical point of view it may prove to be universal.  
A warning sign on this issue is the existence of the Hanbury Brown-Twiss effect: 
there are intensity correlations of the rays issuing from the same distant source of 
light [23,24]. Indeed, the square of the amplitude means, as we repeated quite a 
few times by now, an intensity in the optical realm. And, if an equation like (2.3.9) 
proves to be universal according to the general mathematical structure of a signal, 
then we can take that the medium of refraction index (2.1.4) is that necessary all-
pervading medium of the classical ether type, support of every phenomenon in the 
world we inhabit. Anyway, at least we have guidance in our proceedings. To wit: 
we need to follow the idea of the meaning of a refraction index as the one suggested 
by this ray optics, and then, more importantly, to follow the track of an equation 
like (2.1.11) or (2.3.9). It is particularly important to know if such an equation 

d3

dt 3 A2  4 0
2 d

dt
A2  0
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appears anywhere else in physics at all, and in what conditions. As we have shown 

previously ([35], Chapter 3, §3.4), this equation is of essence in the regularization 

theory of Kepler motion. One thus can say that it is of essence in the problem of 

interpretation, securing the invariance to the scale transition of this interpretation. 

A major problem still remains to be solved here, though, for it is directly 

connected to the equation (2.3.8), which, in turn, is conditioning any result declared 
thus far: how can we define the frequency in a proper way, that is, in such a way as 

to include the phenomenon of holography from the very beginning?! A sound 

solution imposes by itself through the idea of coherence, and can be obtained using 
the ‘Kepler’s second law’ (2.3.6), which seems to be an apt universal mathematical 

fact, endorsed by the theory of regularization ([34], §3.4). Taking, therefore, for the 
amplitude as a function of phase, the definition provided by the Kepler’s law (2.3.6), 

will be consistent with the holographic principle defined according to Dennis 
Gabor’s ideas. For once, this definition would mean that the time variation of phase 

must be physically recognizable in the intensity of a certain wave. Then, proceeding 
just mathematically, we are able to transform the Keplerian condition (2.3.6) into a 

second-order differential equation for the amplitude of the complex signal: 

 

(2.3.10) 

where C is a constant, and the notation: 

 

(2.3.11) 

represents the Schwarzian derivative of the phase with respect to time. In equation 
(2.3.10) the definition of a frequency is conspicuous, by comparison with the 

equation of motion of a simple harmonic oscillator (2.3.3). Indeed, this defines the 

frequency in terms of the phase of the general signal (2.3.4) by the equation: 

 (2.3.12) 

which allows for a plus of mathematical precision in formulating the holographic 

principle. For once, the Schwarzian derivative is a curvature [15], but let us show 
what we mean by this kind of precision, in some specific details. 

Everything revolves now around the definition of the Schwarzian derivative 
[see, for relevant details and a comprehensive presentation of this operation [37], 

Chapter 5, §§X, XI, XII]. One property is striking in this definition, of which we 
shall make much use in this work: any solution of the equation (2.3.12) is defined up 

q,t{ } = 2w0

2
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to a homographic transformation. This would mean that the manifold of solutions 
of equation (2.3.12) is three-dimensional, not in the sense of the linear superposition 

rule, though, but in the sense that it can be surveyed by locating its points with three 
parameters. In the superposition rules’ phrasing, we rather have here a nonlinear 

superposition rule with three basic solutions of the equation [see [7], §§2, 3, 
especially equations (3.51–53)]. More precisely, knowing three solutions of the 

equation (2.3.12), a fourth one can be found right away, without any integration, 
because it must have a constant cross ratio with those three. In order to prove this 

statement, we use the general relation of transformation of the Schwarzian [see [37], 

especially Chapter 5, §XII, Ex. 19(iii)]: 

 
(2.3.13) 

where {,} is the Schwarzian derivative of the phase  with respect to the phase . 

If this derivative is null, the two phases are connected by a homographic relation 

[ibidem, Ex. 19(v)], i.e.: 

 

(2.3.14) 

so that we have: 

 (2.3.15) 

telling us that the homographic action of the 2  2 matrices can cover the whole 

ensemble of solutions of the equation (2.3.12). According to this theorem, the 

general form of the solution of equation (2.3.12) depends on three parameters: it can 

be obtained from any particular solution by the group formula (2.3.14). In other 

words, we can construct the whole system of phases of a signal having a definite 

frequency, starting from a particular one: the system of phases corresponding to the 

same frequency – this one being defined by the equation (2.3.12), with an amplitude 

as in equation (2.3.10) – is the orbit through a particular phase  of the group of real 

homographies. This is a continuous group with three infinitesimal generators, locally 

described as a sl(2, R) Riemannian space. This Riemannian space is the local 

expression of the holographic phenomenon, which here has a precise meaning: the 

whole system of phases corresponding to the same frequency. This gives us a 

possibility of interpretation – and speaking of interpretation here, we mean 

interpretation in the wave-mechanical sense, whereby the phase can be associated to 

a particle [11] – mathematically describable in the terms that follow. 

The hard part of the mathematical description of the holographic phenomenon 

according to the previous definition would be to find the ‘seed’ phase, the phase 

q,f{ } = 0 \ q(f) =
af + b

gf +d

q,t{ } = f,t{ }
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whose information is carried in any other phase. Let us assume that we have found 

it, and denote it by . The whole sistem of phases  carrying this information is 

described by equation (2.3.14), with  = constant. Thus, any phase  is 

mathematically describable by the solutions of a differential equation of Riccati type: 

 (2.3.16) 

correlating the variation of phase with the variations of the three parameters 

describing the holography. Here, the differentials ( k) are the components of the 

standard sl(2,R) coframe [see [35], equation (4.4.3)]. If we are able to transform this 

equation into an ordinary differential equation with respect to a certain ‘time 

parameter’, then it gives us an expression of the phase rate to be used in equation 

(2.3.10), in order to define the amplitude. 

Now, in most cases we have encountered thus far in our study, this is an easy 

task facilitated by the metrics of the sl(2,R)-type: as a rule, these possess three Killing 

vectors, for which the dual rates ( k/dt) are constants along their geodesics (see e.g. 

[45], for mathematical details). It is known, indeed – and we shall repeat the 

procedure here for a typical case of interest, in the due time, when the occasion will 

call for it – that the differential forms of the sl(2,R)-type coframe are projections of 

the momentum forms generated via the metric Lagrangian, along the Killing vectors. 

Therefore, in such cases, the equation (2.3.16) becomes an ordinary Riccati 

differential equation along the geodesics: 

 (2.3.17) 

where (a1, a2, a3) are three constants characterizing the sl(2,R)-type geodesics in 

question, and a dot over means differentiation with respect to the arclength of the 

geodesics. This means that a geodesic becomes a point in the sl(2,R)-type 

Riemannian space. So, according to the holographic principle, only along such 

geodesics the physical theory may happen to be interpretable in the wave-mechanical 

sense. Of course, the process asks for an inversion of the amplitude defined by the 

rate of phase (2.3.17), so that the inverse of the amplitude will appear as describing 

a free particle. Indeed, using the combination of the Kepler law (2.3.6) with the 

equation (2.3.17) gives: 

 

(2.3.18) 

which represents the radial motion of a free particle, whose kinematics is described 

in a time provided by the phase . 

df = w 1f2 +w 2f +w 3

r2

a1f2 + 2a2f + a3
= const, A2 = r-2
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Again, we have strong clues to believe that, physically speaking, this should 
be the case: according to Wagner’s theorem (see [34], Chapter 4, §4.3) this 
holographic space is the realm of the free particles realizing the oscillators. The 
most important of these clues is the fact that the holographic definition of the 
frequency characterizes indeed the nucleus of a planetary atom. This statement 
seems to us sufficiently proven as a consequence of the classical dynamical 
problem associated to Kepler problem [36]. However, in the theory of nuclear 
matter per se, this idea comes associated with an idea of interpretation via the 
concept of collective coordinates [20]. So, we need to insist on the physical 
aspect of the problem from the perspective of these two natural philosophical 
concepts. For this we need first some special geometrical considerations. 

2.4. SOME DIFFERENTIAL-GEOMETRIC PREREQUISITES 

The mathematical method itself, for carrying out the task of introducing the 
physics into natural philosophy is, in this specific case, based on some almost trivial 
statements regarding the foundations of the mathematics necessary in building a 
differential geometry. These statements emerged by and large apparently unnoticed 
or, even if noticed, they have not been properly used in their capacity; at least not for 
physical purposes, anyway. In order to make our statement more obvious, we 
reproduce here two of these statements, in the form of Élie Cartan’s ‘algebraical’ 
theorems which are recognized to form the ground of his remarkable mathematical 
approach to differential geometry involving the so-called moving frames (for a clear 
description of the idea, from the point of view we adopt here, see, for instance, [47], 
Volume II, Chapter 7). Afterwards, these theorems will be used in a short description 
of the Cartan’s method for the classical case of the differential geometry of surfaces. 

The theorems in question are drawn here directly from one of Cartan’s courses, 
published via the Russian geometrical school of S. P. Finikov (see [9]; pp. 16 – 17, 
Theorems 7 and 9). We appropriate them for our purposes here under the name of 
Cartan Lemmas 1 and 2, only in order to be suitably used in making our point as 
explicit as possible. Here they are: 

Lemma 1. Suppose that s1, s2,…, sp is a set of linearly independent exterior 
1-forms. Then there exists a convenient symmetric matrix, a say, such that: 

 
(2.4.1) 

where 1, 2,…, p is another set of linearly independent 1-forms and a 
summation over repeated indices is understood. 

 

Lemma 2. Suppose the basic differential elements du1, du2, …, dun are connected 
by a system of equations: 

s   0    as with a  a
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(2.4.2) 

where ω,   1, 2, …, p are linearly independent 1-forms. In this case the  
2-form f constructed with the differentials du1, du2, …, dun vanishes as a 
consequence of this system of equations if, and only if f can be written as the 
sum of exterior products: 

 (2.4.3) 

where, again, summation over  is understood, and  are p conveniently 
chosen 1-forms. 

The first one of these theorems is, by and large, known as Cartan’s Lemma 
proper in the specialty literature, being routinely used, so to speak. As to the second 
one of these theorems, it carries no special name in the literature, being in fact used 
only occasionally. 

What appears to be essential in these lemmas, and is almost always stressed 
mainly in old treatises of geometry, but apparently forgotten lately – perhaps due 
only to the exclusive mathematical applications – is the fact that the symmetric 
matrix a from Lemma 1, as well as the 1-forms  from Lemma 2, are things external 
to the geometrical problem at hand, and, moreover, can be conveniently chosen. We 
take these attributions as meaning that they, can be things geometrical, as originally 
intended, of course. However, for our purposes they can also be things physical as 
well, i.e. things through which the physics can be naturally introduced into 
geometrical theory, or vice versa: the geometry can be introduced into physical 
theory. 

A case in point: we need to introduce the physics in the theory of surfaces, in 
order to make it physical, as Louis de Broglie intended, and thus suitable to serve his 
idea in constructing the light ray, or a ray in general for that matter. When 
concentrating on the local geometry around a position on a certain surface, without 
being interested in the global aspects of that surface, as it is almost always the case 
in physics, especially in the de Broglie’s physical optics, this observation becomes 
essential. Consequently, we can use the above two lemmas, primarily in order to 
implement physical properties compatible with the geometrical ones or geometrical 
properties compatible with physical ones. We need to mention, though, that there are 
a great many problems that the differential geometry allows us to solve using them. 
In fact, we simply can state that the wave mechanics per se would not be possible 
without these mathematical possibilities. 

With this task in mind, and before continuing any further, let us recall once 
again the convention referring to our use of numerical indices: insofar as either the 
space or the matter, contemplated as environments in the embedding problem 

 1  0,  2  0, ...  p  0

f  
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necessary to physical interpretation, are apparently always three-dimensional, we 
reserve the Latin indices exclusively for this case. The Greek indices are used for 
any other dimension, as in the case of lemmas above, but especially for dimension 
two, in the case of surfaces, and dimension four in the case of the manifold of events, 
viz. the spacetime. 

One of the most instructive examples of using the calculus with exterior 
differential forms, of which we shall have to avail plentifully in the present work, is 
the differential theory of surfaces. The Louis de Broglie’s example of construction 
of a physical ray, the structure of the Ampère current elements and the physical 
description of Thomson’s tubes (see [34], Chapters 2, 5 and 6), are all guiding 
examples showing the points where we need to intervene by ‘inserting’ physical 
conditions in a local theory of surfaces. In particular, the definition of the local 
curvature of a surface in space, and of its variation is a consequence of the Cartan’s 
Lemmas just presented above. Inasmuch as these mathematical tools allow us to 
attach physical reasons to the variation of curvature of surfaces, this makes the fact 
obvious that this geometric concept has always a physical origin, at least partially 
anyway, and we shall use it explicitly here. In a historically significant note, for 
instance, the surfaces were first made known by human senses as space limits of 
material bodies. More than that, it is, again, highly significant that, when the matter 
was first made unambiguously responsible for the curvature of space [10], only the 
surfaces were taken into consideration for analogy, not the space itself. 

We need, therefore, an appropriate way of describing the local situations in the 
case of surfaces – this is what counts most in the case of a theory of rays anyway – 
as well as some mathematical connection between these situations which, for rational 
explanation, can be turned to physical descriptions. To wit, we first need to focus on 
the local situation, by performing the analysis in terms of the components of the 
position vector on a surface [22]. In a Cartanian version of the local geometry of a 
surface, we use two coordinate lines with parameters (u1, u2), and take the unit vector 
ê1 of the reference frame on surface along the lines of coordinates u2  constant, and 
the unit vector ê2 along the coordinate lines u1  constant, while ê3 is the local normal 
to surface. Occasionally, this normal direction is also denoted by â, the letter 
suggesting an oriented area, therefore a limited portion of surface. Obviously, u1,2 
denote the parameters on the surface, as we said, but this requirement involves 
physically special precautions, as we shall soon encounter. Assume that (ê1,ê2) is a 
reference frame on the surface: any physical vector referred to the surface can be 
written in the form: 

 (2.4.4) 

where we apply the rule, already announced above, about indices. In the case here the 
Greek indices take the two values 1 and 2, for they are referring to a two-dimensional 

V V k êk V  ê V 3ê3
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space form: the surface. Four values of indices are reserved for relativity, while five 
values are usually considered for Kaluza-Klein type physical theories, for instance. 

Let us present now the way of writing the absolute derivative of a vector, 
defined as a vector field on the surface. This derivative is itself a vector, as a rule. 
The differentia ‘absolute’, added to the presentation of the concept of derivative,  
is taken here in the sense that it contains both the intrinsic variation, of the given 
vector – which, by its definition needs to be physical – and its variation due to the 
fact that it is connected to surface, and the surface itself changes its profile in the 
neighborhood of any one of its points. This is, of course the notorious case of the 
propagation of a wave. In order to reveal the necessity and significance of any one 
of these components of the variation of a vector, let us take notice that, using 
equation (2.4.4) we can write, using in a first instance the usual rules of 
differentiation (viz. the ‘Newtonian’ rules): 

 (2.4.5) 

The components of the vector in the left-hand side of this equation are not 
simply the differentials of the components of V, insofar as these last ones need to be 
‘updated’, so to speak, with the contribution of the variation of the reference frame 
itself. This reference frame varies on the surface in concordance with its local 
topography and, being involved in physical problems connected with interpretation 
concept, even in concordance with the instantaneous topography. 

We shall denote the reference frame in a point on surface by the symbol |ê, as 
in equation (2.4.5). When discussing the intrinsic geometry of the surface, this ‘ket’ 
has only two components – the two unit vectors of the reference frame on the surface 
– but in general we need to maintain three components in order to account for the 
connection of the surface with the ambient space. The gist of this approach rests 
upon the simple observation that the concept of surface does not come to our intellect 
but only mediated through the existence of the matter in space. So, equations: 

 

(2.4.6) 

are taken to mean that the Frenet-Serret equations on surface are in connection with 
the 33 matrix Ω describing the variation of the reference frame in space. In (2.4.6) 
we have used the orthonormality of the reference frame in order to split the matrix 
Ω. This equation further suggests the way to introduce the idea that the reference 
frame needs to be considered according to its physical origin, a fact which will be 
properly explained as we go on with our presentation. 

The equation (2.4.6) summarizes the system of Frenet-Serret equations 
describing a moving frame on the surface. This system is quite sufficient for writing 

dV  (dV k )êk V k (dêk )
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down the equation (2.4.5) explicitly, in the details needed for the variation of a vector. 
The feasibility of this construction is assured by the fact that in an Euclidean 
geometry the reference frame in a point in space is only defined up to an arbitrary 
rotation, which, as always, secures its possibility as a choice. Thus, in the presence 
of surface, the three-dimensional equations from (2.4.5) can be written in the 
following form that accounts explicitly for the existence of the surface: 

 (2.4.7) 

where our convention for indices was used. One can see that, even if the vector V 
would not have itself a component normal to surface, its differential, which is the 
one usually called absolute, has such a component due to the participation of the 
surface itself. It is important to take notice that the differential component in question 
is the same even in cases where the vector itself has a constant normal component to 
surface: in such a case only the intrinsic components of the differential are changing. 
Let us get into the details of the very differentials, but this time using the point of 
view of the surface in describing the space. 

The Cartan’s approach to geometry is particularly appealing to physics by the fact 
that we can make the surface meaningful in the definition of the local geometry of the 
space. This means an explicit construction of the matrix Ω with its relationship to the 
metric of surface. Start with the observation that the differential vector dr  sk|êk. The 
components of this vector are differentials, and so are the components of the variations 
of the reference frame |dêk. Exterior differentiation and use of Frene-Serret equations 
provide the compatibility and structural equations, that can be symbolically written as: 

 
(2.4.8) 

These equations are basic equations for the local geometry of space. If, in order 
to get them, we only need to adapt the space reference frame to the surface, then the 
matrix Ω for surface may be simply identified with a 22 submatrix of matrix Ω for 
space. Therefore, the best instructive case would be the one in which the space 
reference frame is orthonormal itself: starting from this case, it will be more obvious 
where to go on with the physics, when guided only by the rules of calculus. In an 
extended form, the equation (2.4.8) provides the system: 
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Now, assume that dr is an intrinsic surface vector. This occurrence can be 
expressed as the vanishing of its normal component s3, which brings this system to 
the form that should be valid on the surface: 

 
(2.4.9) 

Thus, as we said, we take a first instance of the matrix Ω characteristic to 
surface, as the 22 submatrix of the matrix Ω for space: 

 
(2.4.10) 

with a proper identification of this submatrix and of the other entries as functions of 
the position on surface. Actually, this would be more profitable for the construction 
of a geometry of the ambient space given the surface as reference, than the other way 
around. 

Now, we start using the Cartan’s Lemmas, as presented in the beginning of 
this section. Start with the last one of the equations (2.4.9): according to Cartan’s 
Lemma 1, the entries Ω 3

1 and Ω 3
2, of the matrix Ω, should be the components of a 

ket vector |Ω 3, that can be expressed linearly in terms of s1 and s2, by a homogeneous 
relation, realized via a conveniently chosen symmetric matrix: 

 
(2.4.11) 

where the upper index “T” stands for “transposed”. 
The symmetric matrix b is the matrix of the quadratic form commonly known as 

the second fundamental form of surface in the classical theory of surfaces. This quadratic 
form describes the local shape of the surface, measuring its “departure from flatness”, so 
to speak, therefore, implicitly, the “curvature” of the surface in any direction. In order to 
make this obvious and, alongside, to exemplify once again the essential distinction 
between the usual differentiation and exterior differentiation, we shall express now the 
second symmetric differential of the position vector on the surface. Physically speaking, 
this is the differential that matters: when referred to an appropriate time as a continuity 
parameter of a motion, arranged, say, with a clock in a convenient order, it offers the 
acceleration field that plays the part of field intensity of the forces responsible for the 
physics of a problem involving the presence of a surface. Cases in point: from practical 
point of view, the surface of Earth, and from purely theoretical point of view, the horizon 
of black holes. Historically, the first case helped in characterizing the gravitational field, 
all the way starting from Galilei and, through Newton, reaching Einstein’s relativity that, 
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in turn, created the concept of black hole. The second case, properly developed into a 
‘membrane paradigm’ [41] gave us the possibility to figure out how the matter per se 
may act in generating a reality – accessible either directly or via the intercession of some 
devices – to our senses. 

The second differential of the position vector is, in view of (2.4.6): 

 (2.4.12) 

and, obviously, it is only a particular case of the equation (2.4.7): this last one is 
particularly applied to the vector dr. The equation (2.4.12) makes it quite obvious 
that, unlike dr, which is an intrinsic vector of surface, the second differential d2r has 
also a component normal to surface, as a consequence of the evolution of the 
reference frame in space. Obviously, this kind of evolution brings in the properties 
of the surface as components of the differential variation of the vectors. Using the 
equation (2.4.11) this component is the quadratic form we called before the second 
fundamental form of surface: 

 (2.4.13) 

where the first identity is due to the fact that, by definition, drê3  0, while in the last 
equality we used the equation (2.4.11). On this occasion it is also worth considering the 
first fundamental form of the surface, which represents the square of the length of dr: 

 
(2.4.14) 

Here h is the metric tensor of the surface, and, only in order to define its 
concept, we assumed here the general case of a surface reference frame which, while 
being ‘normal’, is however not ‘orthonormal’ in general. In this case we obviously 
assume that the third vector of the space frame is perpendicular to the plane (ê1,ê2). 
If in reality this is not the case, we can construct easily a vector satisfying the 
condition as the exterior product (ê1ê2). Using the metric tensor h, we can raise and 
lower the indices of vector components and matrix indices, in case these are tensors, 
as it happens to be the case with the matrix b. Thus, we have, denoting, as commonly 
done, by upper indices the contravariant components of the vectors and tensors, a 
‘mixed’ matrix b, of entries: 

 (2.4.15) 
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Using this equation, we define the mean curvature and the Gaussian curvature 
of the surface: 

 
(2.4.16) 

Now, using the fact that the contravariant metric tensor is simply the inverse 
matrix of the covariant one, we can write the two measures of curvature in the form 
they are usually taken in the classical differential geometry of surfaces: 

 
(2.4.17) 

When the reference frame on the surface is also ortogonal, the metric tensor in 
equation (2.4.14) is the identity matrix up to a factor, and the relations from equation 
(2.4.17) become simpler: 

 
(2.4.18) 

It is, however, worth keeping in mind the general case where the metric of 
surface is a general quadratic form, not an Euclidean one. First of all, by itself, this 
does not upset the general conclusions above: because the metric tensor is a 
symmetric matrix, we can always construct a local orthonormal reference frame by 
its eigendirections. The discussion above runs in exactly the same way, with s1 and 
s2 the two components of the metric written as a sum of squares. Secondly, there are 
distinct advantages of the general approach, when the geometry starts being 
complicated by issues of physics, which is, in fact, our task here. To start with just 
an observation to be later on elaborated into a full-fledged theory, notice that the 
second of the equations (2.4.17) roughly offers the ratio between two areas: the 
‘deformed’ local area, with the ‘deformation’ due to curvature, and the ‘global’ area, 
as represented locally by the determinant of the metric tensor of the surface. This 
property can further offer a general gauging possibility, valid for any dimension, 
using the concept of curvature [44]. 

While we are on this subject, let us take notice of the fact that there is also, 
within the framework of the very same Euclidean theory, a third fundamental form 
of the surface, defined by the square of the matrix b. To wit, dê3 is an intrinsic vector 
to surface, just like dr itself and, according to equation (2.4.6) its square is, again, a 
quadratic form. In the Euclidean differential geometry of surfaces this is commonly 
termed as the third fundamental form of the surface: 
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 (2.4.19) 

Mention should be made that there are cases where this quadratic form must 
be taken as a metric of surface when constructing the geometry of space with 
reference to that surface [42]. 

3. THE CATEGORY OF MATTER 

According to the definition from §2.3, the local holographic property of a 
medium entertaining waves is decided by its fundamental physical structure: the 
resonator. On the other hand, concurring with its definition by Planck, this 
fundamental physical structure can only be physically accomplished in a special 
optical medium: the Maxwell fish-eye. Indeed, the Riemannian geometry of the optical 
paths – apparently, the only mathematics that serves our intellect in judgments 
regarding this issue of natural philosophy – indicates that only such a medium can 
accommodate dipoles internally connected by geodesics that are light rays. And as we 
are used – since Einstein’s times leastways – to think that the geodesics are associated 
with free particles, a first instance of the free particle in the case of a dipole would be 
the light coming with the optical device represented by the Maxwell fish-eye. Of 
course, this kind of light needs an apropriate interpretation: it cannot be always that 
electromagnetic light suggested by the initial Planck’s definition of the resonator. As 
we have seen thus far, a resonator in the case of quantization of matter – a Procopiu 
resonator – must be realized, according to Katz natural philosophy of charges, by a 
magnetic dipole: a piece of matter ending in magnetic charges. 

Accepting the concept of interpretation, a holographic property of such an 
optical medium can be expressed by the homographic action of 22 matrices, over 
the one-dimensional system of phases. These phases can be arbitrary functions of 
coordinates in space: the linear phases of the classical plane waves are just particular 
cases. The homographic action of the matrices is, in our opinion, expressly required 
by the very Dennis Gabor’s definition of the holographic property, as a condition of 
coherence of the phases, which has as a first consequence the fixed value of 
frequency. As we said, the definition can be applied to a general concept of phase, 
not just to the one connected with the classical idea of plane waves. As we shall show 
in this chapter, the general idea regarding the space dependence of phases is via 
harmonic mappings. The holography offers possibility of interpretation, with a 
rational definition of general free particles. 

3.1. THE CHARGE AND THE SURFACE DEFORMATION 

The definition of a physical surface is made possible by the concept of curvature 
(see §2.4 above), according to the physical idea of capillary action advanced by Louis 

dê3 dê3  (b2 ) ss
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de Broglie. Namely, in the case of a capillary tube, an already existing surface is 
deformed on a portion of surface inside the tube: that portion is the surface of a fluid. 
Thus, the first order of things from the point of view of a mathematics serving the 
physics here should be the description of such a deformation. The Cartanian approach 
delineated in §2.4 allows us a concept of deformation that fits the physical-theoretical 
needs the best possible way: the infinitesimal deformation (see [22], §10-4). 
Accordingly, we define the two surfaces of a de Broglie region we have called ‘strange’ 
(see [34], §2.1), limiting this region longitudinally, as two surfaces having a common 
infinitesimally deformed surface that can play the part of Lorentz neutral surface for 
this element. Let us start with the mathematical presentation of the idea. 

Consider the surface as a horizon of the kind serving to make the case for 
‘membrane paradigm’ in the matters of blackholes, but take the matters in the inverse 
order: we need to describe an infinitesimal deformation of it, destined to serve in the 
introduction of physics in the manner of introduction of the electromagnetic fields 
in the membrane paradigm [40,41]. What one further needs is the construction of a 
function z(u,v), describing the deformation according to equation: 

 (3.1.1) 

where x is the position on a reference surface that goes by deformation into position 
r of the deformed surface. For the construction of z, we use the metric form of the 
surface. In this case, the deformation is infinitesimal if: 

 
(3.1.2) 

where  is a parameter. According to (3.1.1), we can write the deformed metric as: 

 (3.1.3) 

and then the deformation is infinitesimal in the sense of (3.1.2) if: 

 (3.1.4) 

In other words, in the first order of the parameter , the infinitesimal 
deformation is not even “felt” in the surface by its metric: what we need, in order to 
‘feel’ it, is a finer perception, reaching into the second order in the parameter . 
Assuming an Euclidean mentality, there is always an arbitrary vector q, serving in 
writing dz in the form: 

 (3.1.5) 
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which satisfies the condition (3.1.4) just naturally. The arbitrariness of q may be 
significantly reduced – and we shall explain what “significantly” means right 
away – if we take notice that dz has to be an exact differential, for then we must 
have: 

 
(3.1.6) 

Here “” means that in the monomials of the vector product, the usual 
multiplication needs to be replaced by an exterior multiplication of differentials. 
Using the notation: 

 
(3.1.7) 

the condition (3.1.6) can be transcribed in the form: 

 

which, in turn, comes down to the system of equations: 

 
(3.1.8) 

The first two of these equations show, according to the rules of the exterior 
differential calculus, that j 3  0 on the surface, because s1 and s2 are independent 
exterior differentials of the first degree in the geometry of a surface described by 
them. According to the definition equation (3.1.7), this means that the vector dq is 
situated in the tangent plane of the surface, i.e. it can be taken as an intrinsic vector 
with respect to surface, just like dx or dr. On the other hand, the last equation from 
(3.1.8) says something more. First, by the Cartan’s Lemma 1, it can be transliterated 
into a matrix equation:  

 

(3.1.9) 
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According to its ‘intrinsic’ property, the vector dq looks like a sort of 
‘complement’ of the infinitesimal displacements dx on the surface, as described in 
the previous §2.4. The similarity goes even deeper: the conditions for integrability 
of dq are: 

 
(3.1.10) 

and, obviously, replicate the similar ones for the components of dx given in equation 
(2.4.9). Using the equation (3.1.9), the third one of these conditions amounts to: 

 (3.1.11) 

which means that the infinitesimal deformation adds to the support function of the 
surface a quadratic component, apolar to the second fundamental form. 
Consequently, this new intrinsic vector j offers, in fact, a description of the 
deformation by an ‘update’, as it were, of the second fundamental form of the surface. 
This is, actually, a natural consequence of the surface deformation, in the first place. 
Still natural should then be an update of the curvature matrix. Let us see how this 
can be mathematically inferred. 

Assuming that the curvature of the surface is essential in its physics, especially 
in the physics of electricity, we are free to choose to read the third of the equations 
(3.1.10) as determining the ancillary vector j in terms of the curvature, according 
to the Cartan’s Lemma 1, so that there is a convenient symmetric matrix A, such that: 

 (3.1.12) 

Now, the previous theory of infinitesimal deformation helps us in establishing 
a special structure of the matrix A, in terms of the variation of curvature. First, when 
we use the last of equations (3.1.10), in conjunction with the geometrical definition 
of  3 from equation (2.4.11) and with equation (3.1.9), both written formally as: 

 

we get from (3.1.12) the following local relation defining the matrix A: 

 (3.1.13) 

Here, i is the 22 fundamental skew-symmetric matrix, as usual: our notation 
only suggests the obvious fact that it is the matrix replica of the imaginary unit from 
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the case of complex numbers. The relation (3.1.13) is not universally independent on 
the portion of surface around a certain position. However, it is certainly locally useful, 
if we are able to detect the possible mechanisms of changing the surface profile. 

If the matrix a is determined such that  3 is a constant vector – a condition 
equivalent to the conservation of the normal vector of the portion of surface, which 
can be taken as a natural definition of a ‘portion of surface’ necessary in the physics 
of the de Broglie’s ray – then A does not depend, indeed, but only on the existing 
curvature and its differential variation. This can be seen as follows: according to the 
definition (2.4.11) of the vector  3, its condition of being constant comes down to: 

 
(3.1.14) 

Assuming therefore, the component of vector j strictly measured by the 
variation of curvature, we can take a  b–1db, so that equation (3.1.13) can be 
formally rewritten as: 

 (3.1.15) 

and the equation (3.1.12) becomes: 

 

(3.1.16) 

where (1, 2, 3) is the sl(2,R) coframe constructed on the matrix b, and dn is an exact 
differential. In other words, by infinitesimal deformation as it is defined in this section, 
the curvature matrix gathers a differential component also containing a skew-
symmetric part in need to be interpreted. Classical-type considerations point out 
toward a connection of this part with a surface torsion represented by a ‘twist’ [33]. 

Consider now the differential 1-form |x,q,dq| representing the volume of the 
cuboid constructed on the three vectors entering its expression. Insofar as all three 
vectors are variable, we may need the variation of this volume. This is also physically 
significant and needs to be calculated. The exterior differential of it is a 2-form, just 
like the electric induction or magnetic flux in electrodynamics. This 2-form can be 
calculated, and we do this job by first rearranging the elementary volume 1-form, 
such that it appears as: 
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Then its exterior differential is simply the exterior product of two differentials: 

 (3.1.17) 

where the symbol “” means that in the exterior product the usual multiplication of 
numbers is replaced with the dot product of the vectors. Now, because, according to 
the usual rules of differentiation, the first factor here can be written as: 

 

one can transcribe (3.1.17) as: 

 

In the right hand, side the first paranthesis is zero by (3.1.11); calculating the 
remaining term by using the equation (3.1.12), we can finally wrap up the calculation 
of (3.1.17) in the form: 

 (3.1.18) 

Locally, x3 is the support function of the surface, which can be used as a space 
coordinate in case we use the local patch as reference.  

In order to realize the importance of this definition of infinitesimal deformation, 
we relate it to the Lorentz’s definition of the electric matter. So, we have a charge 
vector q, to be understood as a triad of numbers (q1, q2, q3) independently on any 
reference frame: in short, a ket q. Likewise, the vector dq, effectively characterizing 
the infinitesimal deformation, has to be understood as a ket j representing the 
intensity of the charge current, having the entries (j1, j2, j3). This current has only in-
surface components, for, by the first two conditions (3.1.6) the third component of 
charge namely j3  0, and thus q3 can be taken as a constant. Apparently, this is the 
constant alluded to by the definition of Lorentz for the charge. In order to keep this 
idea fresh, it is worth reproducing, once again, the very words of Lorentz himself. 
Quoting, therefore: 

If, after arbitrary movements, the matter is reduced to its primitive 
configuration, and if, during these movements, every element of a surface which 
is steadfastly attached to the matter was traversed by equal quantities of 
electricity in opposite directions, all of the points of system will be found in their 
primitive positions ([32], §57; our translation and emphasis) 

The infinitesimal deformation presented above seems to express 
mathematically the very essence of this physical point of view. The only new twist 
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we give to this mathematics is that the charge, as a property of matter, becomes the 
generator of this deformation. We only need to define more precisely what is a 
surface “steadfastly attached to matter”, and afterwards to realize that “traversing” 
and “primitive positions” have special meaning related to the geometry of motions. 

In this connection, another quotation of the great theorist should be clarified 
based on the geometrical theory of deformation. Once we accept the idea that the 
infinitesimal deformation is connected to the existence of charge, we need to assume 
further some difference between a deformed surface and a surface “steadfastly 
attached to matter”. To wit, such a surface cannot be taken as a support of 
transporting charge: there is a difference between the surface transporting the matter 
per se – the matter “steadfastly attached to surface”, as it were – and the surface 
containing electricity. There is a difference between the two fluids – electric and 
inertial – to be recognized in the fact that the static forces generated by charges 
prevail over those generated by gravitation. But Lorentz takes the ordinary inertial 
fluid as a model for any fluid. Quoting: 

If this hypothesis cannot be admitted in the case of an ordinary fluid, it 
could not be applied to the electric fluid either. However, this fact does not 
prevent our equations of motion from being accurate. Indeed, the mass of this 
last fluid was supposed to be negligible, and in calculating the variation T 
(kinetic energy, n/a) only that kinetic energy was considered, which is specific 
to the electromagnetic movements; it will suffice therefore that the material 
points liable of these motions, and which are not to be confused with the 
electricity itself, enjoy the property of returning to the same positions if, for each 
surface element, the algebraic sum of the quantities of electricity by which it has 
been crossed, is 0. 

Now, one is entirely free to try on the mechanism that produces the 
electromagnetic phenomena any convenient assumption, and while 
recognizing the difficulty of imagining a mechanism that possesses the desired 
property, it seems to me that we do not have the right to deny its possibility. 
([32], §67; our translation and Italics) 

In order to clearly delineate the physical concepts here, we follow the idea of 
infinitesimal deformation closely. And this idea takes a positive turn, based on 
classical considerations: there should be an electrically neutral deformed surface, for 
any pair of surfaces ‘steadfastly attached to matter’. 

Indeed, in matters physical, the Ampère current element connected to 
electricity (see [34], Chapter 5, passim) should not be a line element as, usually 
considered in the classical electrodynamics. Closer to a reality, it should rather be a 
cylindrical portion of matter included in a portion of tube, in order to support the 
different physical requirements. The first of these, and foremost we should say, is 
the finiteness of a physical conductor: the way it apears to our senses, it is not a line, 
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but a solid. Then the idea of de Broglie’s ray comes just naturally when describing 
such a conductor: the classical current element is simply a matter tube, inside which 
the electricity propagates. Leaving aside, for the moment, the side cylindrical portion 
of surface delimiting the element like a ring, the classical theory of surfaces allows 
us, via the concept of infinitesimal deformation, to characterize the Ampère element 
thus conceived, longitudinally, as it were. And, when we say longitudinally, we mean 
in the direction of the currents passing through it. It is the direction along which the 
element extends infinitesimally, just like its classical counterpart. However, unlike 
that classical ancestor, this Ampère current element has sideways extension that may 
be characterized by a measure – either finite or infinitesimal – just like the 
longitudinal extension, which, however, is exclusively infinitesimal. 

3.2. A PROCOPIU RESONATOR 

Now, we can go for a proper update of the definition of an Ampère element. It 
seems to be the best candidate for what one can think as a Procopiu resonator: a piece 
of matter limited by two magnetic charges. The hard part of the problem here is the 
definition of the magnetic charge, but the infinitesimal deformation allows us to 
define it. It is in this spirit, that the theory we just presented above assigns the 
infinitesimal deformation to the existing charge from an all-pervading sea of charge 
in the form of neutral vacuum, perceived by matter via a portion of a surface locally 
described by the parameters (, , ) characterizing its curvature. This can be, for 
instance, a typical portion of the wave surface delimited by a de Broglie tube 
representing a light ray. 

Once again, our use of symbols q, dq, j1,2,3 in the previous mathematics is 
entirely intentional: q represents a charge vector, as usual, while j represents a 
vector intensity of charge current. The charge and its current help us interpret the 
infinitesimal deformation in terms of the concept of charge as a vector. In other 
words, if the mathematical condition “there is always a vector q serving in writing 
the deformation” according to equation (3.1.5), is to be backed physically up, this 
vector should be existent virtually everywhere in the realm thus described 
mathematically. 

The concept of vector charge has entered our intellect ever since the charge 
was approached in physics from the perspective of quantization in matter (see [12] 
and the literature cited there). Its vectorial character was almost explicit to Julian 
Schwinger, but we think it was Daniel Zwanziger who can rightfully be credited with 
a systematization of the concept as a geometrical one (see [55] and the literature cited 
there). Fact is that, results of the regularization procedure, especially those regarding 
the so-called focal regularization (see [35], §3.4), encourage us into using the 
concepts of classical dynamics in explaining the geometry of the space containing 
the center of force of the classical Kepler problem. Therefore, such results can be 
used in order to explain older concepts, like the Lorentz’s matter and the Thomson’s 
realm with its mandatory sideways action of force ([34], §6.2). 
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Now, regarding the physical structure of currents of this Ampère current 
element, we assume an interpretation at our disposal. This allows us to define the 
two portions of surface delimiting the element longitudinally, by “pegging them out” 
as it were, with “particles” positions. The essential condition for the possibility of 
such a definition is that the matter inside the current element should be a Maxwell 
fish-eye medium. The general philosophy is then simple: any point within such a 
medium is the location of entrance and exit of an ensemble of geodesics. The two 
portions of surface delimiting an Ampère element are “pegged out” by particles 
serving for interpretation, located in points from the medium. These are 
corresponding to one another via the geodesics of the medium: there are geodesics 
exiting from one particle located on one of the two surfaces, and entering another 
particle located on the other surface, so that the Lorentz’s condition is satisfied for 
such a “dipole”. By itself, the dipole is then a resonator, of either Planck or Procopiu 
type. According to Katz natural philosophy of charges, this last type of resonator is 
obtained if particles do not have the possibility to move along the line joining them, 
the matter being rigid. This condition must be retained in order to properly define a 
magnetic dipole. For now we are limiting ourselves to a few qualitative observations. 

The remaining problem is the construction of the mid-surface, satisfying the 
Lorentz’s condition of neutrality. Let us reproduce here, for convenience, a final part 
of Lorentz’s natural philosophy of defining the electric matter, which appears as the 
crowning point of a long series of works on electricity in the 19th century. These 
started with Ampère himself, who defined the classical current element, and included 
the names of Gauss, Riemann, Maxwell, Betti, Beltrami and many other coryphaei 
of the classical physics and mathematics (see [34] and the literature cited there). 
Lorentz’s definition, succinctly contained in the excerpts above, seems to cumulate 
all the opportune conclusions of this line of physical thinking, and we intend to 
follow it further here in order to characterize the Ampère current element. Thus, 
quoting again: 

Here is now a system of hypotheses that give the value 0 for this variation 
(of the kinetic energy of the system, a/n): 

a. There are two systems of particles participating in electromagnetic 
motions, systems that will be indicated by the letters N and N. 

b. Any time a certain particle pertaining to one of these systems is to be 
found in the immediate vicinity of a particle of equal mass pertaining to the other 
system. 

c. The two systems always have equal movements inversely oriented or, 
stating it more exactly: 

If two movements of the same duration start with the same initial positions 
and do not differ but by the sign of the components of the electric current, and 
if P and P are points pertaining to systems N and N that coincide in the initial 
configuration, the point P will reach, in the second movement, the same final 
position the point P reaches in the first movement. 
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This obviously implies that, at the time of coincidence, the points P and 
P have equal and opposite velocities. Indeed, changing the signs (of the 
components of current, a/n) will reverse the velocity of the point P; but, 
according to the last hypothesis, this velocity must then become equal to that 
which the point P had previously. 

Notice again that, in the course of a certain movement, a new particle P 
will coincide with a given particle P. Two juxtaposed wheels, having equal and 
opposed rotations of the same axis, may serve as an example. ([32], §69; our 
translation and emphasis, a/n) 

Thus, with no more ado about it, we see the Lorentz program satisfied along 
the following lines. First, we assume the matter interpreted by ensembles of Hertz 
material particles in static equilibrium under the three forces generated by their 
physical differentiae: gravitational mass and the two charges, electric and 
magnetic. These particles do not exist freely, they are figments of our 
imagination, just like any physical invention serving our knowledge: material 
point, dipole and such. The reality is that such an equilibrium does not even exist 
in our experience: depending on the space scale one Newtonian force prevails 
over the others in a perpetual nonequilibrium. At the scale of the universe at large, 
the gravitation prevails, while in microcosmos the electric and magnetic forces 
prevail. It is starting from this fact of experience that we are able to infer the 
theoretical necessity of existence of a static equilibrium. Inasmuch as this state 
of the matter is inexistent in our experience, then, naturally, we need to invent it, 
in the good habit of the classical natural philosophy, or for any human philosophy, 
for that matter. 

Now, once we have at our disposal an interpretation, we can imagine a surface 
“marked” by material particles serving for interpretation, and take it as a ‘surface 
steadfastly attached to matter’, according to Lorentz’s expression. A “portion of this 
surface” is then primarily defined by the values of the entries of matrix b from 
equation (2.4.11), representing the curvature properties. An infinitesimal 
deformation, as in the classical capillary tube, will add to this matrix a contribution 
as in equation (3.1.16). Let us do some calculations: if the matrix b has the entries , 
, , so that it can be written as: 

 
(3.2.1) 

so that if we assume the condition (3.1.14) in defining the element of surface, we 
end up with the conclusion that the infinitesimal deformation adds to the curvature 
matrix the contribution (3.1.16), where: 
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def  
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(3.2.2) 

and: 

 (3.2.3) 

According to equation (3.1.16), the curvature of this surface should be 
expressed by the matrix: 

 

(3.2.4) 

This surface also corresponds via the same process of infinitesimal 
deformation to a surface steadfastly attached to matter having the curvature 
parameters: 

(3.2.5) 

Thus, if the surface characterized by (3.2.1) and that characterized by (3.2.4) 
are taken as delimiting an Ampère element, the measure of the longitudinal extension 
of this element should be somehow connected to the metric properties of the mid-
surface characterized by the differential forms (3.2.2). As we see them, these metric 
properties are of a statistical nature (see [36], Chapter 9, §5), along with the 
curvatures of the surfaces delimiting the element. What we have to retain for now is 
that a Procopiu resonator can be seen as a special Ampère element of current. 

3.3. PHASES AND CHARGES IN A HOLOGRAPHIC UNIVERSE 

The holographic principle presented by us in §2.3 involves the homographic 
action of the 22 matrices on the phases. It can, therefore, be inferred that, as long as 
a surface is not steadfastly attached to matter, it cannot carry matter by transport, but 
can carry out just phases. As the phenomenon of holography can be described by the 
homographic action of the matrices, it is expected that the way to describe physically 
the transport of phases can be mathematically represented by the elements of the 
actions of matrices. Let us expound on the meaning of this statement. 

Naturally, in this context, our first issue here should be the most complete 
characterization of the 22 matrices by their homographic and linear actions on 
phases in general. After all, these are the only possible actions that can be defined 
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for the matrices of this kind. Every such matrix, assumed with real entries (, , , 
) – the notation is chosen in order to be in line with that of the previous work on 
whose calculations we intend to rely [see [35], equation (4.4.3)] – has two of its 
elements strictly determined by the three independent ratios of its entries. These are 
the fixed phases of its homographic action satisfying the condition: 

 
(3.3.1) 

There are two fixed phases, viz. the roots of the quadratic equation just written 
down here. Within the idea of a holographic property of an optical medium, as 
described in §2.3, they play a central part in the theory, so we can assume that 
knowing them is an essential point of understanding of the phenomenon of 
holography. Our first task here is finding those homographies strictly determined 
only by the knowledge of their fixed phases. 

A first move is to exploit the relation between roots and coefficients in equation 
(3.3.1), and thereby construct a matrix whose linear action is determined exclusively 
by its homographic action. The way this statement can be understood will be obvious 
as we go on with our construction. If we know the fixed phases in the holographic 
process, 1 and 2 say, then by equation (3.3.1) two of the entries of the matrix are 
known alongside, so that the resulting matrix contains two arbitrary parameters 
besides the fixed phases: 

 
(3.3.2) 

In this approach, the only matrix strictly determined by the knowledge of the 
fixed phases must be of the form: 
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up to a multiplicative constant. Denoting this matrix by  – suggesting the idea of 
‘phases’ in the construction of a matrix – the most general matrix (3.3.2) having the 
two fixed points can be formally written as: 
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In other words, determining a matrix by its homographic action results in a 
family of two-parameter commuting matrices having the same fixed phases. This is 
a general property: any two commuting matrices have the same fixed phases; 
reciprocally, the matrices having the same fixed phases commute with each other. 
There are notable exceptions from this general rule, but they are not concerning us 
just yet. 

The main point of interest in the holographic phenomenon here is that,  
in any homographic action of one of the matrices from the family (3.3.4),  
the two fixed phases, 1 and 2, are preserved, and they can represent the essential 
information constant during this phenomenon. This information is preserved in 
any phase M(), where M() is the homographic action of the matrix M. 

Now, regarding the linear action of the matrix (3.3.4), it is also 
characterized by its two fixed elements: the eigenvalues. As known, there are two 
of them, and they reproduce the linear structure of the matrix as given the 
equation (3.3.4), that is they are linear in the fixed phases, involving the same 
two arbitrary parameters: 

 
(3.3.5) 

Notice, now, that the matrix from equation (3.3.3) has eigenvalues 1 and 2, 
so that this particular case can be characterized by a matrix  whose eigenvalues and 
fixed phases are identical. This is what we understand when we say that the linear 
action is determined by the homographic action. Of course, the statement can be also 
taken in the reverse for this case: the homographic action is determined by linear 
action. 

As the measurement results are usually represented by eigenvalues, especially 
in modern physics, one can see that the results (3.3.5) are not pure measurements: 
they depend here on the fixed phases. In fact, the reckoning can be very well reversed 
here, in order to make the two fixed phases dependent on measurement results, as it 
were: the two fixed phases are depending linearly on eigenvalues. This is actually 
the historical order of things measured in general: an experimental setup must exist 
in order to execute a measurement. The holographic things just follow this path in a 
specific way, that is all: record two images of an object in two different phases, and 
then bring them together into a hologram [19]. A 22 family of matrices representing 
a hologram must reproduce this universal situation revealed to our intellect by 
Dennis Gabor. And it can be understood, indeed, if we attach to a phase the idea of 
surface, in the manner of Louis de Broglie (see [34], passim). 

In order to take this opportunity and insert it into a descriptive physical theory, 
one needs first to proceed to another construction of the previous matrix, for a case 
entirely opposite to the previous one. This will consist of the construction of the 22 

m1    1, m2    2
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matrix strictly depending on phases, but with the fixed phases independent on the 
eigenvalues. The general idea, in keeping with the historical order, is to separate 
issues when determining a general matrix. And we have a remarkable case for 
inspiration, that came with the discovery of spin phenomenon of the electrons. 
Namely, the idea of spin ½ generated the idea of isospin, and we need to go along 
with this last idea when it comes to introducing the charges. This can be done as 
follows: build out of two given phases, 1 and 2, a matrix having them as fixed 
phases, but having the eigenvalues 1. These two eigenvalues can very well be the 
two fundamental charges of our world, or the two values of the half-spin of particles, 
for instance [46]. In any case, such a matrix would have the structure: 

 

(3.3.6) 

Like the previous matrix, constructed exclusively on the fixed phases as in 
equation (3.3.3), this matrix has also the fixed phases 1 and 2, indeed, but unlike that 
version of such a matrix, it has the eigenvalues 1. Then, a linear combination with 
arbitrary coefficients, counterpart of that from equation (3.3.4), say of the form: 

 (3.3.7) 

with the matrix  given in equation (3.3.6), has the eigenvalues (  ) 
independently on the two fixed phases. However, as in the previous construction, 
these eigenvalues can also be taken as phases. 

Concentrating on this last manner of construction, the matrix  is our channel of 
introducing the concept of surface in physics. The manner of doing this is simple, and 
even presents itself quite simply to our intellect: consider the two fixed phases as 
coordinates on a surface. The suggestion comes from the ‘classical’ – we may be 
allowed to use this suggestive word here – eigenvalue problem of half-unit spin [46]. In 
that case, the surface is the regular unit sphere in space, and we have: 

 
(3.3.8) 

where  is the angle of colatitude on the unit sphere, and  is the angle of longitude. 
The matrix , constructed according to the recipe from equation (3.3.6), is therefore 
given by the 22 table: 

1  cot
2
ei 2   tan

2
ei
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(3.3.9) 

and has the eigenvalues 1, indeed, as can be easily verified. However, we have a 

potential situation here, if we continue to see the values of spin in the eigenvalues of 

a matrix like (3.3.7) constructed with the matrix from (3.3.9). To wit, any other spin 

should then be represented by the eigenvalues of the corresponding matrix M. But 

these eigenvalues are a priori arbitrary, with no selection rules to apply: if such rules 

exist, they must come out from other considerations. 

There is, however, an area of application of this scheme of holography, where 

this arbitrariness may prove beneficial: the case of a resonator. Regarding this as 

a case of charge measurement, it means the measurement of two charges equal in 

value and opposite as sign: e, where e is the quantum of electric charge, or g, 

where g is the quantum of magnetic charge. These two eigenvalues are independent 

on the phases of the two kinds of charges, just like in the case of half-spin 

measurements. Any other case of resonator must come out with the eigenvalues of 

the corresponding general matrix M, viz. (  e) or (  g), independently on 

the two phases of the charges. Notice, however, that these ‘measurements’ provide 

a priori arbitrary charges, either magnetic or electric, and that the two phases 

switch their roles in the matrices (3.3.9) describing the two measurements. 

Regarding the arbitrariness of the results of charge measurements, the 

theoretical physics invented the idea of confinement in order to appease  

the things in this case: the elementary particles carrying such charges are 

confined into physical structures, so that they are not natural in the finite universe 

of our experience, and cannot be observed in a free state. In a holographic 

universe, though, this fact appears as quite natural: the charges are only phases 

to be associated to different surfaces in matter by, say, the Lorentz’s procedure 

[see (Lorentz, 1892); §§57 and 67; see also the previous §§3.1. and 3.2. for 

details], and they are manifested, indeed, in a universe defined as such by the 

matrix M: the quantization procedure is therefore to be defined here accordingly. 

Such a universe presents itself naturally, where it was indeed signaled for the 

first time: it is the nucleus of the planetary model, described as a dynamical 

Kepler problem [36]. The rest of this work is dedicated to characterizing this 

realm as a holographic universe: optically speaking, it is a Maxwell fish-eye 

medium. 

3.4. THE RESONATOR WITHIN THE ATOMIC NUCLEUS 

Having at our disposal a matrix like that from equation (3.3.6) the 

holographic phenomenon can be described as in equation (2.3.16), because the 

three components of the sl (2,R) coframe are readily available. Based on this 



51 The Physical Basis of Procopiu’s Quantization 189 

observation we will develop here a model of the nuclear matter based on the idea 
of resonator. What we understand by nuclear matter is an optical medium 
delimited around the center of force in the classical dynamics describing the 
Kepler motion by the natural condition of existence of closed orbits. This 
medium is known to be an sl(2,R)  metric space, with a metric that can be 
constructed a priori by the methods of absolute geometry, as in the §2.2 above 
[36]. The fixed phases to be used in construction of the matrix  from equation 
(3.3.6) are complex, z and z* say, so that the resulting matrix is: 

  

(3.4.1) 

The complex number z has an algebraical form that includes the initial velocity 
of the motion, so that we can say that the condition of existence of the closed orbits 
is of a holographic nature, to start with. The second of the two fixed phases is given 
by its complex conjugate z*. Let us work in real phases, for the results are more 
suggestive: the matrix  from equation (3.4.1) is, in real phases, u and v say: 

 

(3.4.2) 

where the imaginary unit i is maintained into the picture in order to make  
the determinant of the matrix –1, as in the cases where the two fixed phases are 
real, and the two eigenvalues are 1; otherwise, these would be i. In general, 
though, we can dispense with the factor i in the theory, with no significant 
consequences. 

The coefficients of the Riccati equation (2.3.16) representing the set of phases 
associated with a given hologram generated by matrix  from equation (3.4.2), are 
[see [35], equation (4.4.3)]: 

 
(3.4.3) 

The Cayley-Klein metric of this algebra is, up to a sign, the Beltrami-Poincaré 
classical metric of the unit disk, given by: 
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(3.4.4) 

where s, representing the geometrical arclength, is, again, a phase. The geodesics of 
this metric can be simply calculated by considering it a Lagrangian, and then solving 
the Euler-Lagrange equations. These are: 

 
(3.4.5) 

where the accent means derivative on s. One can verify right away that the solutions 
of these equations are given by cycles, which we write in both the parametric form, 
as well as in the implicit form: 

 

(3.4.6) 

Along these geodesics, the differential forms (3.4.3) become: 

 
(3.4.7) 

and along them the equation (2.3.16) is simply an ordinary Riccati equation with 
constant coefficients. We stop here for now, as we need to discuss the position of 
equation (3.4.5) and (3.4.7) regarding the connection between the phase and the host 
space of the matter. 

The parameter s can be taken as a phase, provided it satisfies the Laplace 
equation in space. This can be shown as follows [3] (see also [4] for the description 
of the method in a particular case): the problem of interpretation in the case of 
holography is pending on a particle moving on the geodesics (3.4.6). The 
interpretation per se is given by the harmonic mappings from the matter to space. 
Proceeding as usual [36], we need to construct the energy functional of the metric 
(3.4.4), which is the integral: 

 
(3.4.8) 
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The Euler-Lagrange problem for extremizing this functional, provides the 
equations: 

 
(3.4.9) 

These equations look like the equations of the geodesics (3.4.5). The resemblance 
is becoming an identity if we assume that they represent waves with particles moving 
collectively but along separate geodesics, like the light does along straight lines, in our 
experience. Indeed, this means that the parameter s of the geodesics needs to be taken as 
a wave phase: a function in space associated to the particles moving along the geodesics. 
In this case, the equation (3.4.9) can be written as: 

 
(3.4.10) 

which reduces to (3.4.5) if s is a solution of the Laplace equation: 

 (3.4.11) 

The identity in question takes place only for phases that are solutions of the 
Laplace equation. The equation (3.4.7) associates with one of these geodesics a 
matrix analogous to the one from equation (3.4.2): 

 
(3.4.12) 

corresponding to the values u0 and v0 of the parameters. One can say that a geodesic 
maintains two phases constant along it: u  v. These are the fixed phases of the matrix 
(3.4.12), and they are the same all along a given geodesic. This is, in fact, the method 
of associating a phase to a moving particle: the free particle moves along a geodesic, 
and has two real phases constant along that geodesic. But the whole advantage of 
associating phases to motion this way, comes with another, by far more important 
observation. 

If a geodesic (3.4.6) is uniquely characterized by a matrix like (3.4.12), this 
means that the correspondence between two geodesics can be related to the variation 
of such a matrix. A rational model of such a variation presents itself via the 
differential of the matrix: 

 (3.4.13) 

v2u  2u v  0 and v2v  (u)2  (v)2  0
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Let us calculate the matrix −1d, using equation (3.4.12). The result is: 

 

(3.4.14) 

where the entries are the following differential 1-forms: 

 

(3.4.15) 

This is an sl(2,R) coframe, seeing its structural equations: 

 

 

(3.4.16) 

The Killing-Cartan metric of the coframe (3.4.15) is conform-Lorentzian: 

 

(3.4.17) 

The geodesics of this metric are given parametrically as: 

 

(3.4.18) 

where  is the arclength along this metric. In other words, going along the geodesics 

of the metric (3.4.17), the geodesics (3.4.6) of the metric (3.4.4) must be located as: 

 
(3.4.19) 

We have here a family of cycles through two fixed points u0  v0: these two 

phases represent two locations satisfying the essential requirement of the Maxwell 

fish-eye optical medium. Thus, they reproduce the structure of a resonator, and it 

remains to be decided what kind of resonator it is: Planck’s or Procopiu’s!? 
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The answer that we find the most rational of them all is based on the 
observation that the metrics (3.4.4) and (3.4.17) satisfy to a kind of ‘duality’, if we 
may be allowed to say so. As we have seen thus far, the parameters u0 and v0 of the 
geodesics (3.4.6) follow the Riemannian geometry of the metric (3.4.17). Let us see 
what geometry follows the parameters u0 and v0 of the geodesics of the metric 
(3.4.17), in their turn. Just as in the first of these cases, we just need to calculate the 
differential forms (3.4.15) along the geodesics (3.4.18). The result is: 

(3.4.20) 

In other words, a geodesic of the metric (3.4.17) is uniquely associated with a 
matrix (3.4.14) of the form (3.4.2): 

(3.4.21) 

This time we have a resonator with two complex locations: u  iv, prone to be 
associated with charges in the nucleus of the planetary model, judging by the realm 
to which the metric (3.4.4) applies. 

The bottom line is that there are, indeed, two kinds of resonators inside the 
nuclear matter thus understood, and deciding which is which takes more than a 
simple mathematical observation. Our thesis is that it takes a constitutive law of the 
optical medium in question, and this can be decided only by a physical 
characterization of the other category involved in the equilibrium within a Wien-
Lummer enclosure: the light. Up to this point we discussed only the matter: let us, 
therefore, turn to the light. 

4. THE CATEGORY OF LIGHT

The physical theory of light constructed by Augustin Fresnel had many 
connotations of quite different sorts. For once, it meant a severance of the theory of 
light from the old classical phenomenology involving only the phenomena of 
reflection and refraction. For, by concentrating on the diffraction phenomenon, as it 
did, Fresnel’s theory added, actually, the diffraction to that old phenomenology, thus 
creating a new phenomenology of light destined to make the theory, depend 
exclusively on a technology of experimentation. In turn, this new phenomenology 
had to wait for another century or so, in order to be again ‘updated’, so to speak, with 
the phenomenon of holography, which can be safely connected with the name of 
Louis de Broglie, once it is based on quantization [19]. However, the one connotation 
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of Fresnel’s theory we are considering now means a generalization of the theory of 
light, far and beyond its electromagnetic stance, in fact well into the modern theory 
of particles and fields. In time, this was achieved, first via the Yang-Mills 
generalization of Maxwell electrodynamics and, secondly, via the Willem de Sitter’s 
generalization of the concept of free spacetime, setting the Einstein’s ideas on 
relativity in order. 

This capability of the Fresnel’s theory of being so versatile is due to the fact 
that it has strong ties with two classical ideas of a general natural philosophical class: 
the concept of Ampère element, as involved in the description of a kind of Lorentz 
matter and, above all, the concept of de Broglie’s surface, as the one involved in the 
classical theory of light. In order to document this statement, we start by quoting the 
great Henri Poincaré, who once aptly summarized what we think is the essential 
point of the Fresnel’s physical theory of light: 

This is, in a nutshell, the theory of Fresnel. It is in every respect in 
conformity with the experimental laws; but we notice that it rests upon two 
hypotheses demanding closer examination. These two hypotheses can be 
enunciated as: 

1 The elastic force arisen by the motion of a plane wave is independent 
on the direction of the plane of wave, it depends only on the direction of the 
vibrations of the molecules, and is proportional to the force developed by an 
isolated molecule, the other molecules from the plane of the wave remaining at 
rest. 

2 The only effectual component of the elastic force is the component 
parallel to the wave plane. 

The first of these hypotheses, which Fresnel vainly tried to justify, is 
entirely arbitrary, but nothing precludes its acceptance (…) 

As to the second one, it is an immediate consequence of the 
incompressibility of the ether. We already stated that, in his calculations, Fresnel 
admitted, often implicitly sometimes, that the resistance of the ether to 
compression would be null, sometimes that it would be infinite. In these lessons 
we have situated ourselves, up to this point, in the first of these hypotheses; let 
us look now for the equations of motion within the hypothesis that the resistance 
to compression is infinite, that is the elastic medium is incompressible. 
[(Poincaré, 1889), pp. 229 – 230; our translation and emphasis, n/a] 

We used this “second hand”, as it were, quotation on the Fresnel’s original 
concepts (Fresnel, 1821, 1827), because it is the clearest one when it comes to the 
physics involved into description of the light phenomenon. As these few phrases of 
the illustrious Henri Poincaré suggest themselves, the original expression of the 
Fresnel’s ideas is, inherently we should say, in view of the novelty of the concepts it 
introduces, a little confusing. This is why we preferred the clarity of this quotation, 
brought by at least fifty years of “theoretical physics” contemplation of the initial 
concepts. Notice that Fresnel implicitly considered the concept of surface in its 
utmost generality – once he used the idea of wave plane – which, for once, compels 
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us into construction of an adequate theory, accounting explicitly for this concept. The 
problem of Fresnel inconsistency regarding the description of behavior of the ether 
to compression, needs also to be undertaken from a modern perspective, for it is 
connected with a fundamental way of thinking that led in time to the Maxwellian 
theory of light. 

Indeed, it seems to us that the two apparently conflicting physical properties 
of the ether – sometimes resistance to compression null, sometimes infinite – cannot 
describe the same physical entity for, according to the common experience, such an 
entity can possess either one or another of them, but not both properties at once. As 
one can clearly understand from the above excerpt, the strategy of physics was 
always to see to what each one of the properties leads in terms of the perceived 
properties of the ether, and then decide what this medium should really be, in order 
to check experimentally if true. Useless to say, what the ether actually is has not been 
decided even to this day, so that, in a way, we are presently giving a reason to this 
very fact: the two mutually exclusive properties are only a natural philosophical 
consequence of the mechanical constitutive characterization of a material 
continuum, and as long as the ether is considered material, it cannot be but an 
electromagnetic ether. 

4.1. CONSTITUTIVE CHARACTERIZATION OF RESONATOR ENSEMBLES 

In the mechanics of continua, one works, as a rule, with second order tensors 
or, more general, 33 matrices, in order to represent stresses and deformations of 
continua. Unlike the central forces, these are strongly non-polar mathematical things, 
at least as long as we do not specify them in terms of fields of displacements and 
forces. Furthermore, when it comes to the reality of these things, it is only guaranteed 
by the so-called constitutive law. Let us elaborate a little on this concept. In broad 
terms, the mechanical constitutive law is a relationship between stresses and the 
strains they induce – the measures of deformation – during the process of 
deformation. As our representations of these concepts is usually by matrices, the 
most general constitutive law is simply a mathematical relation – algebraic or 
analytic – between two 33 matrices. If we denote by t the matrix of tensions 
(stresses) and by d the matrix of deformations (strains), representing, then a 
constitutive law is a relation of the form t  C(d) where the matrix function C is 
accessible to experimental evaluation. Here we insist on the meaning according to 
which t is the applied stress on a continuum, while d is the resulting strain. 

The reality we just mentioned above is then connected to the identity of the 
material characterized by the constitutive law. For, it is claimed, in the modern 
science of materials, that the stress and strain matrices are universal mathematical 
tools, while the function C is a specific feature of the material upon which the stresses 
are applied. One can see in the concept of stress, extended beyond the applied stress, 
a mean to eliminate the force in general from the mechanics of continua. Indeed, it 



196 Nicolae Mazilu 58 

is only the applied stress that is intimately tied up with the idea of force. Otherwise, 
the stress can be thought of as a density of energy describing the matter, in general 
even independently of the applied force. Therefore, if it is to extend natural 
philosophical conclusions – which, by their very nature, carry entirely the mark of 
our senses – onto the description of a fictitious matter, as in the case of ether, for 
instance, then it is more appropriate to accept the idea that the ether of space deforms 
in any conditions, and if the ether of matter is acted upon in any way, it responds by 
the deformation which we describe by a matrix designated d. Thus, we are bound to 
find a function C that implicitly contains the physical nature of this continuum. 

Now, a deeper insight into this problem shows a specific feature of it, that goes 
beyond the physics of central forces: one has to deal here with uncontrollable 
manifestations of the matter. This is perhaps the main deep reason of maintaining 
the mechanical manner of thinking in physics. It is, indeed, true that every one of our 
physical actions is associated with forces. In other words, in doing experiments we 
need control. However, we cannot control but forces and, if anything else, through 
forces. It is seldom noticed that, in the framework of mechanics, as long as we are 
maintaining the forces as essential theoretical tools, there can be no room for 
uncontrollable quantities. This is exactly what has happened with the ether theories 
along the time: nothing uncontrollable has been admitted in its physics. We think 
that an ether theory is a critical field where we must recognize the existence of 
uncontrollable quantities and, most importantly, we must not describe them in the 
manner we describe the controllable quantities. If the ether exists, the free motion of 
the bodies through it is enough proof that we cannot control its deformations. 

It just happens that the most general idea of uncontrollability comes quite 
intuitively with what we would like to call a natural constitutive law. Indeed, a 
constitutive law relating the applied stress to a resulting strain experimentally 
recorded, usually by a measured length, must be of the form: 

t = p0 ‧ 1 + p1 ‧ d + p2 ‧ d2 (4.1.1) 

where 1 is the identity 33 matrix. We call this equation 1 a natural constitutive law, 
on the grounds that it can be derived from the very basic considerations on our 
representations of stresses and strains. Indeed, if our models of stress and strain are 
33 matrices, and if the constitutive law should be analytic, the equation (4.1.1) must 
be automatically in effect. For, then, the relation between the two matrices can be 
represented by a formal series reducible to a second order polynomial via Hamilton-
Cayley theorem. By the same token, that relation can just as well be written with the 
places of stress and strain matrices interchanged. Thus, the strain matrix as a function 
of stress matrix is also a quadratic function, only with some other coefficients. 

Now, the deforming medium is supposed to have here a precise identity, for 
we can identify it by the coefficients (p0, p1, p2) which are accessible to 
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experiment, and there are indications that these coefficients are different for 

different materials. Their values offer what is actually meant by a ‘material 

characterization’. Often times in the actual engineering practice these 
coefficients are considered pure material properties, but this restriction confuses 

the issues, sometimes with serious consequences, mostly in engineering 

problems. Let us make this statement a little more precise. No matter what the 

material properties ‘incarnated’, as it were, into the coefficients p0,1,2 are, we can 
imagine the following experimental approach to constitutive equation (4.1.1). 

Consider that in each and every one of the loading experiments involving a stress 

incurred to a body like the confined ether, a system of tensions can be defined, 
the principal directions of which coincide with the principal directions of 

resulting measurable strain. In this case, if t1,2,3 are the principal values of this 

stress matrix, and d1,2,3 those of the strain matrix, according to the constitutive 

law (4.1.1) we must have satisfied the system of three equations: 
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This system can be considered as a linear algebraic system in the three 

parameters (p) describing the very material. Nothing hinders us then, in assuming 

that we are able to perform such experiments allowing us to measure all three 

principal values of strain corresponding to the three principal values of stress at once. 

For, to be sure, we can always control a state of applied stress, but can only “watch” 

the resultant strains, and measure them at most. The outcome of experiments – 

whereby the stresses are controlled, and the strains are only observed, at the very 

best measured – will then allow us to calculate the material properties embodied in 

the coefficients p0,1,2 from the system (4.1.1). This system has a nontrivial unique 

solution for these coefficients – a solution of the kind required by the uniqueness of 

the physical properties to be used in the description of the material upon which the 

loading experiments are performed – if, and only if, the principal determinant of the 

system (4.1.2): 
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is non-null. Thus, the parameters p0, p1, p2 are uniquely determined, regardless of the 

character of imposed stress, by the solutions of the system (4.1.2) if, and only if the 
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resulting principal deformations are all different from one another. We have nonetheless 

to notice that in such a situation the stresses defined by (4.1.2) are hardly controlled like 

in an actual experiment: they are, in fact, totally uncontrolled. Now, coming back to our 

experimental considerations, no matter how unique, and thereby well suited for 

characterizing the deforming medium physically, the coefficients thus obtained are by 

no means pure material properties, inasmuch as they all depend on the impressed state 

of stress. Therefore, we are further required to make more precise what we understand 

by pure material properties, and this is, and indeed always was, a big issue. 

We can address this issue by noticing that there are deformations even in case 

where there are no impressed stresses acting on our material. The propagation of waves 

is a case in point, but we do not need to go quite that far, for the gravity makes a very 

good and comprehensible case: our experience is simply determined in a background 

dominated by gravity. Based on the discussion above we can further argue that any field 

must have this essential property. More to the point, as long as we do not know their 

mechanical origin, such deformations can be considered as some intrinsic properties of 

the deforming medium in question. If it is to extend our experience beyond observations, 

then such intrinsic properties can be supposed to be generated by forces on whose 

presence we have momentarily no idea, therefore by those forces assumed to exist inside 

interpretative ensembles of the matter. Limiting, at least when it comes to the description 

of ether, the mechanics only to external or impressed forces, i.e. accepting that there is 

no possibility to describe the action upon continuous parts by forces, leaves no 

alternative but to consider them as intrinsic properties of the continuum. In terms of 

system (4.1.2) they can be described by the system of equations: 
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 (4.1.4) 

Then, the matter description by experiment is transferred into finding the 

solutions of this homogeneous linear system, in case they exist. As a matter of fact 

they always exist, we have to decide just how many of them, and this fact depends  

on what we can always really measure. If we are able to always measure three different 

deformations in three different directions in space, in the case of no apparent action on 

the medium, then this medium is not responsive to any impressed stresses (p0,1,2 = 0). 

That much we know from our historical experience: the possibility of bodies to move 

unobstructed through ether, is the main quality of the ether that propagates light and 

this is why Fresnel ‘had sometimes’ to assume it! 

However, there are also possibilities of solutions in which the ether may be 

responsive to external stresses, in other words its deformation can be associated with 
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stresses definable according to equation (4.1.4) for the material. These possibilities 
are given by the nontrivial solutions of the system (4.1.4), and they are made possible 
only in those cases where there are less than three measured strains. Thus, if we 
measure one and the same strain value in any direction – the material is isotropic 
from the point of view of deformation – we can have a double infinity of states of 
stress of ether, depending on two matter parameters. If we measure two strain values, 
and only two, in a direction and its perpendicular plane for instance, then we have 
states of stress of the ether depending on one matter parameter. Granting that we can 
include one of the matter parameters into a measurable quantity, the most general 
constitutive law satisfied by the ether exhibiting definable stresses corresponding to 
a measured strain will be given by a constitutive law involving three determinable 
parameters in the form: 

 (4.1.5) 

where K is an arbitrary constant. One can say that such a material has three 
uncontrollable quantities, out of which two are measurable: the constant K and the 
two eigenvalues of deformations. 

In closing here, notice that as long as we are interested in just the measurable 
quantities in characterizing the ether, there is a convenient way to do this. Namely, we 
just have to construct a characteristic deformation matrix of the deforming medium, 
using the two uncontrollable strains measured under no apparent mechanical action upon 
the medium in order to form a special tensor having the entries: 

 
(4.1.6) 

where l is the unit eigenvector corresponding to the eigenvalue d1. Such a medium 
has distinguished directional properties, with respect to the direction l, and these 
properties are given by the eigenvalues d1 and d2. As a matter of fact, the equation 
(4.1.6) does contain both on the previous two cases as particulars, if we agree to 
characterize the intrinsic material properties as deformations. Notice that this is an 
assumption independent of the constitutive description, and must be secured only by 
our measurement capabilities. Thus we have this general conclusion: whenever the 
medium deforms freely, i.e. under no noticeable actions on it, its deformation matrix 
must be of the form given by equation (4.1.6), all the particular cases included. The 
deformations as well as the stresses are then manifestly tensors. This is the case of 
the ether in space: the medium through which the bodies move freely. 

Notice now that the quadric associated to the tensor (4.1.6) is a spheroid, 
prolate or oblate, depending on the ratio of the two eigenvalues d1 and d2. This is the 
general geometrical form associated with a dipole. Consequently, we can assume 
that this kind of ether is simply one of the category supporting the rays described by 
us in §2.1. 

t  K(d  d11)(d  d2 1)

dij  d2 ij  (d1  d2 )  lil j , i, j  1,2,3
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By the same token we can discuss the ether in matter: that category of ether 

capable of sustaining stresses and exhibiting no strain. It is indeed by this essential 

property of matter that comes first to our senses in the form of incompressibility. For 

this, the converse constitutive law must be taken in consideration, namely: 

 + 2

0 1 2d q 1 q tt q=   +   (4.1.7) 

This time, however, t may be abusively called stress, if we define the stress by 

controllability: let us just say that it is a tensor representing the internal energy in 

matter. Then the defining state of such an ether will be characterized by the system 

of equations: 
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 (4.1.8) 

corresponding to no strain response. Again, the characterization of this ether 

depends upon the number of solutions of this system: if one can always measure 

three different stresses in three different directions then the ether has no 

deformational response to any stresses (q0,1,2 = 0). This is, again, the case “sometimes” 

considered by Fresnel, i.e., the incompressible case. And the most general strain this 

kind of ether can exhibit is of the form: 

d = K1
−1  (t − t11)  (t − t21 ) (4.1.9) 

where the constant K1 has dimensions of stress. It is perhaps of some gnoseological 

significance – at least for guiding our natural-philosophical reasoning, if nothing else – 

that the relation (4.1.9) with t1 + t2 = 0 has been found to be characteristic for metals, in 

large as well as small deformations: metals always struck our senses by their hardness. 

Again, as long as we are interested in just measurable quantities characterizing 

such a material, then its intrinsic stress tensor assumes a convenient representation, 

similar to (4.1.6). However, this time we are compelled to assume further that the 

eigenvalues of t, whatever this physical magnitude may be, are measurable. All we 

know about them is that they are ‘stress-like’ as it were, i.e., they must have the 

physical dimensions of the energy density. Inside a material these can be realized 

only by interpretation, for instance by fluxes of intermolecular forces, as once 

posited by Augustin Cauchy. Thus, the counterpart of (4.1.6) is here: 

( ) ,ij 2 ij 1 2 i jt t t t m m = + −        i, j = 1, 2, 3 (4.1.10) 
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where m is a unit vector corresponding to the eigenvalue t1. One can say that the 
general characteristic of materials exhibiting no deformation under stress is of the 
form (4.1.9), all particular cases included. 

A digression is now in order, for better understanding the issues of this 
characterization of matter. It involves either the constitutive relations (4.1.6) or those 
from the equation (4.1.10). However, while the first of these descriptions of matter 
asks only for properties of a continuum – one needs to measure just strains – the 
second one, involving the equation (4.1.10) asks for more. Namely, as the case of 
Cauchy stresses shows it, here we need an interpretation of the matter. It pays for 
later developments to notice that, while in the first case the matter, as a continuum, 
is described by a Newtonian density, in the second case the description needs an 
Einsteinian density of numerical type. Interestingly enough, the electromagnetism 
seems to cumulate the two descriptions of the ether, into the so-called 
electromagnetic ether, as we shall see right away. 

The case of equations (4.1.6) and (4.1.10) is specific for matrices that we would 
like to call as “equivalent” to a vector field: they characterize dipoles of two different 
kinds. We understand this equivalence in the following way: having a vector field v, 
we can construct the following matrix using two parameters  and : 

 (4.1.11) 

Now, it is clear that, because vk are the components of a vector, and supposing 
α and β scalars, gives vij the components of a tensor. One of the eigenvalues of this 
tensor, namely α, is double. The other eigenvalue, different from α, is given by: 

 (4.1.12) 

Notice some interesting features of this kind of tensor. First of all, if either β 
or vk is null, vij is a purely spherical tensor. Secondly, if we calculate the eigenvector 
of the tensor v, corresponding to the eigenvalue (4.1.12), we find out that this 
eigenvector is just the vector v  v, up to a normalization factor. This property is 
independent on the parameter α, and this is what we mean by the above mentioned 
equivalence: given the vector v we can directly construct the tensor v as a family of 
two-parameter tensor matrices having it as an eigenvector. One can say that v 
represents a kind of action that points in the general direction of v, as it were, not 
exactly in that direction. 

One way to get the characterization of fundamental structure of ether, 
compatible with the category of vacuum – considered as matter, but missing the 
interpretation – is by admitting that this structure is described not by one tensor of 

vij  ij  vivj

    v2
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the general type (4.1.11) but by two, with two characteristic vectors, u and v say. 
According to such a logic, the tensor describing the complete fundamental structure 
of ether would then have entries depending on three parameters: 

 (4.1.13) 

This line of ideas is, of course, inspired by the electromagnetic theory of light, 
where the tensor: 

 
(4.1.14) 

represents the so-called Maxwell stresses of the ether. Here λ and μ are some real 
parameters, describing the “degrees of light and matter” into this ether, with the 
matrices u and v defined as the tensors: 

 
(4.1.15) 

where u and v also denote the vectors generating the corresponding matrices 
according to equation (4.1.11). The tensor (4.1.14) contains eight measurable 
quantities: λ, μ, and the two intrinsic vectors. Written at length, the entries of this 
tensor are of the form: 

 

(4.1.16) 

where u and v are vectors, and we used the following notations: 

 
(4.1.17) 

It is easy to see that this tensor has three real eigenvalues, in general distinct. 
Indeed, its orthogonal invariants are: 

wij  ij  uiu j  vivj

or, symbolically: 

and 
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(4.1.18) 

so that the eigenvalues of tensor w can then be calculated as the roots of the 
corresponding characteristic equation – the cubic equation having the invariants 
(4.1.18) as coefficients – and they are: 

 
(4.1.19) 

It turns out that the pair from equation (4.1.17) gives one eigenvalue of w and 
the corresponding eigenvector. The other two eigenvectors of w are orthogonal, and 
located in the plane of the vectors u and v: they are linear combinations of these two 
vectors. 

At this point we have to give an explanation. Indeed, the general definition 
(4.1.13) of the tensor w involves quite a few quantities in order to be established by 
measurement: the constants α, β, γ, the lengths of the two vectors and their 
orientations, a total of nine quantities. However, this fact is only apparent, for we 
deal here with a symmetric matrix, having therefore only six independent 
components. As a matter of fact the representation in equation (4.1.16) has only eight 
quantities. As the three eigenvalues seem to be mandatory no matter how we proceed, 
for the two vectors only remains a need for only three quantities, leading us to the 
idea that three of the nine parameters are redundant. The problem popped up even 
from the pioneering works of Fresnel, in the form of representability of the 
elliptically polarized light. Its solution took different forms along the time leading 
eventually to the science of ellipsometry, whose first champions were apparently 
Stokes and Verdet [51]. Especially Émile Verdet insisted at length upon the 
statistical aspect of the problem which, according to any imaginable criterion, seems 
to be indeed its essential nature [50]. Here we give an inedited shade to this statistical 
aspect. 

According to the above theory, the eigenvalues of our tensor w, given in 
equation (4.1.19) are already statistical expressions based, like any such expressions, 
on some statistics in continua, called the Novozhilov’s averages ([36], Chapter 7, 
§7.5; see, for conformity, [38]): 

 

(4.1.20) 
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The first of these statistics represent the projection of the vector having the 
components given by the eigenvalues w  (w1, w2, w3) along the diagonal of an 
octant in a local reference frame, which is also the normal to the octahedral plane of 
the octant. As to the second statistics, it represents, up to the numerical factor, of 
course, the length of the component of the vector w in this octahedral plane. It is 
perhaps worth taking notice, while it is fresh here, of the fact that this statistical 
characterization is eightfold, for there are eight octants of the reference frame, with 
different signs of the components of the vector w. This simply means that the linear 
coupling between the two resonators in order to offer the tensor w describing the 
light is eightfold. It might be refreshing for a classical physicist to learn that the 
classical physics of light established by Fresnel, naturally contains the modern 
eightfold way of the structure of matter: perhaps the quarks are not quite so strange 
after all, and they are, indeed, constructions of the mind allowing us to connect the 
observables, as one can often hear. 

Using the eigenvalues (4.1.19), the two measurable statistical components of 
the tensor w from equations (4.1.20) are [36]: 

 

(4.1.21) 

As long as only the values (4.1.20) are measured, the orientation of the vector 
from (4.1.21) in the octahedral plane always remains undecided. This orientation is, 
again, out of our control per se, but it can be measured. It can be accounted for by 
an angle easy to measure in case we have a reference direction in the octahedral plane 
at our disposal. Assume, indeed, that we have such a reference, as given by a 
particular tensor of the form given in equation (4.1.15) with the characteristic vector 
 say. Then, for this tensor we have, with obvious notations: 

 

(4.1.22) 

If the vector  is perpendicular on both u and v, then the tensors w and ξ 
commute. Thus, they have a common reference frame and it can be arranged that 
their octahedral planes coincide. It is in this case that the direction of the vector from 
equation (4.1.22), which is fixed, can be correctly chosen as a reference direction in 
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the octahedral plane. Then the angle  of the vector (4.1.21) with respect to this fixed 
direction in the common octahedral plane can be calculated from a geometrical 
formula (loc. cit. ante), which here amounts to: 

 
(4.1.23) 

This shows that, under specified conditions, the angle  is independent on the 
reference vector. With a proper choice of sign for the square root, the origin   
0(mod2) of this angle occurs only for the cases where e  g. This condition means, 
in turn, that the angle,  say, between the vectors u and v, calculated on the basis 
of the quantities from equation (4.1.17), is given by equation: 

 
(4.1.24) 

As the quantity from the right-hand side here is always greater than or equal to 
1, the angle between vectors u and v cannot be but 90. Thus, the initial condition 
for the characteristic angle of tensor w in the octahedral plane takes place when the 
vector u is perpendicular to v and their plane is perpendicular to vector . If this 
last vector is given by a ray for instance, we have the classical image of the 
propagation according to Fresnel. One has to notice, however, that the price paid 
here for avoiding the classical kinematics in describing the vibratory motion, is 
accepting from the very beginning the planar description of the wave by two vectors 
whose physical meaning may be a challenge. 

Regarding the problem of measurement, one can notice that it refers actually 
to just two quantities and an angle: anything else seems to be inference from these 
three quantities. The redundancy is due, as always in physics, to our geometrical 
models of reality: vectors and tensors. Mention should be made of the important fact 
that the perpendicularity of the vectors u and v is not a purely geometrical property, 
but the consequence of some preexistent statistics. 

4.2. THE ELECTROMAGNETIC LIGHT 

There is nothing more to say in order to see that the previous point of view was 
indeed “incarnated”, as it were, in the ideas of James Clerk Maxwell: the tensor from 
equation (4.1.16) is plainly a classical Maxwell stress tensor, if for u and v we take 
the classical electromagnetic fields e and respectively b. Then the parameters  and 
 can be taken to represent some measures which would indicate how much of this 
ether is space and how much is matter. At least this seems to be the conclusion of an 
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exhaustive analysis [13], showing that at least one of these parameters has to be 
taken as a density. In a word, classically speaking, the equation (4.1.16) represents 
an ether: a state of field cumulating matter and light properties. 

Now, if the light remains the same through vacuum, and one can imagine that 
the light is due to the motion, we have in the tensor (4.1.16) a representative of this 
light. The problem then arises as to the uniqueness of that tensor. We can formulate 
this issue as a problem: find the most general linear transformation of the vector 
fields e and b in their plane: 

 (4.2.1) 

which preserves the Maxwell stress tensor. Here the notations e and b aim to 
suggest that we have to do with a kind of electromagnetic fields, as in the 
classical case. Rewriting the tensor of Maxwell stresses in this connotation, we 
have: 

 
(4.2.2) 

Any kind of invariance of this tensor would necessarily lead to a connection 
between the parameters λ, μ and the entries of the matrix from equation (4.2.1), which 
allow us a concrete description – and a solution, hopefully – of the modern problem 
of vacuum tunneling [29]: the fields are changed by the presence of matter in ether, 
in order to adapt themselves to the different local properties represented by the 
parameters λ and μ. What remains to be decided is how do we define the invariance 
of the tensor (4.2.2), and a proposal presents itself just naturally: the entries of the 
matrix t have to remain unchanged. Then, a fortiori all of the invariants of this tensor 
remain the same and, therefore, what is measured out of it has the same value for the 
whole coordinate space of definition for this tensor. 

This proposal comes out from a twofold suggestion: first, is the importance of 
the tensor t in general relativity and, secondly, we entertain the belief that what we 
are locally recording, is what has been happening far away in our space and, therefore, 
our conclusions regarding the structure of this universe, based on this recording, are 
the right ones. There is, however, a more subtle reason for this kind of “conservation 
law”: if the background radiation has a Planck spectrum [14], then we can say that 
the part of the universe we inhabit is a Wien-Lummer cavity. In view of the scale 
invariance of the Planck’s spectrum, each and every one of these cavities should 
behave the same way, and the conservation of the tensor t appears as the only 
possibility of defining the equilibrium temperature for radiation, according to the 
Planck’s idea. Implicitly then, the conclusion is valid for the Procopiu’s quantization 
procedure. 
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Thus, if by the transformation (4.2.1) the fields (e,b) are to be found in an 
environment described by (, ), then the conservation: tij  tij can be transcribed 
as: 

 
(4.2.3) 

In order to learn how to use these equations, let us just find some particular 
solutions of the system (4.2.3). 

For the special case of homogeneity of the vacuum we have: λ  , μ  . The 
first of the equations (4.2.3) then shows that the transformation (4.2.1) is unimodular. 
From an algebraic point of view, the last three equations then form a separate 
homogeneous system, and thus the system (4.2.3) is equivalent to: 

 
(4.2.4) 

The last of these equations shows that we can express the two entries  and  
trigonometrically, via an arbitrary phase parameter,  say, in the form: 

 
(4.2.5) 

In these cases, the transformation (4.2.1) that does not change the Maxwell 
stress tensor is realized by the matrix of unit determinant: 

 

(4.2.6) 

In general, we may accept a more relaxed condition for the vacuum, equivalent, 
in a way, with the fact that the “refraction index” is constant. Such a condition 
amounts to: 
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It means matter non-homogeneity in regards to physical properties, although 
when the physics is referred to a “refraction index” n, the matter is actually 
homogeneous. In this case, the system (4.2.3) gives the matrix of transformation in 
equation (4.2.1) as: 

 

(4.2.8) 

Formally, this matrix is not different from that gotten in equation (4.2.6): it is 
only that it does not have unit determinant. Let us work on this last matrix, in order 
to build a significant geometry here. Operating the transformation of parameters: 

 
(4.2.9) 

we can cast the matrix into the parametric form: 

(4.2.10) 

In order to reckon what to make out of this matrix, we need to know what to 
make out of the transformation (4.2.1) itself. Thus, if we differentiate that equation, 
we get: 

 
(4.2.11) 

On this occasion it is worth our while simplifying the notation, by adopting 
one which is kind of self-explanatory when we avail ourselves of a Dirac’s notation. 
So, we are transcribing the equation (4.2.11) as: 

 
(4.2.12) 

Assume a state of the fields where de  0: we take it as a static state, if the 
time is encompassing all the possible variations of a field magnitude. This static state 
is “propagated” as in transformation (4.2.1), and the medium transforms it into a 
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dynamic state, just by adding a contribution to field, generated by the matrix of 
propagation m. This contribution amounts to m–1dme, where: 

 

(4.2.13) 

Here 1,2,3 are the three differential 1-forms, components of the sl(2, R) coframe 
which describes an instanton [see [35]; §4.4, equation (4.4.3)], and we used the 
notation: 2  ln(det m). So, the fields m–1de must be considered as “instantaneous 
fields” obtained from the static ones just by propagation. A classical counterpart of 
them is known in a particular illuminating occurrence. 

Assuming here an interpretation by static ensembles, made possible as 
ensembles of equilibrium with static Newtonian force fields, the suggestion presents 
itself that the motion of matter through ether brings a rotation acting upon these force 
fields [25]. It is this experience which further shows that the electric and magnetic 
static forces act in a “tandem”, so to speak, as a force whose expression is linear in 
the electric and magnetic fields, involving also linearly the two kinds of charges, 
electric and magnetic: 

 (4.2.14) 

These forces characterize equilibrium ensembles, whereby the particles 
possessing charges are in a stationary state. Assume, then, that a state of motion is 
described by a “Lorentz-transformed force”, involving the static force from (4.2.14) 
and a rotated counterpart, with the rotation defined by the static charges: 

 
(4.2.15) 

while the equations describing the fields are “symmetric”, i.e., according to the 
Maxwell’s idea, we have: 
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Here,  is the numerical density of particles, while j is their current. These 
equations have the virtue of reducing themselves to the usual Maxwell equations for 
either qm  0 or qe  0. Notice, however, that with no such quantitative consideration 
on charges – which is quite particular, and, therefore, from Katz’s natural-
philosophical point of view regarding the charges themselves, should be, in a way, 
irrelevant – we can define two new field variables via the genuine rotation generated 
by the two charges: 

 
(4.2.17) 

and with these fields the force (4.2.15) becomes the Lorentz force as we usually 
know it from classical electrodynamics: 

 
(4.2.18) 

while the Maxwell equations become those we know from the textbooks: 

 

(4.2.19) 

However, while in the first symmetric version, the rotation is determined by 
the ratio of charges, which in turn needs a special natural philosophy involving these 
charges (see [30]; see also [34], §3.1), in the Lorentz version, the theory is pending 
on a genuine space rotation that needs central forces acting sideways. This notion 
may seem contradictory, but we use it nevertheless in order to pinpoint a fact of 
which we need to account theoretically. 

Namely, insofar as a force is created by a physical characteristic of a  
particle – specifically, mass and charges – it is, no doubt, central: the particle creating 
it is the obvious center of force. On the other hand, when it comes to the action of 
such a force, it can be twofold: the force can act along the direction to the particle 
that created it, or across this direction, i.e. sideways, with an expression of J. J. 
Thomson. Besides the fact that, at first sight, this concept appears as strange by itself, 
from the point of view of motion it requires a special arena where the forces have to 
be logarithmic (see [34]; Chapter 6, §6.2). This arena cannot be but the Louis de 
Broglie’s region that we have found “strange” ([34], Chapter 2), which is an 
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expression of the holographic property of light. This requirement leads to the 

necessity of a wave image, as de Broglie’s theory stipulates, but it turns out to be 

valid along with the Maxwellian electrodynamics, just as Lorentz intended to show 

in the first place. The bottom line, then, is that the relativity, as an expression of the 

necessity of interpretation, needed the concept of wave: otherwise, the interpretation 

itself, as a necessary step in the construction of a theory of physical structures, could 

not be a full concept. 

The fields defined by equation (4.2.12), starting from a static state which 

reflects the equilibrium of the ensembles of particles, are generalization of those 

obtained by the above charge-induced pure rotation in the classical electrodynamics. 

Thus, the matrix (4.2.13) accomplishes a genuine duality transformation of the static 

fields, not just a duality rotation, but a more involved transformation that can be 

written in the form: 

 
(4.2.20) 

In calculating these fields for the matrix m given in equation (4.2.10), we just 

have to calculate the matrix from (4.2.20). 

The bottom line here is that the category of light, unlike the category of matter, 

is physically called to decide on the phases in matter: the matrix m from equation 

(4.2.10) is the one serving in indexing the geodesics in the nuclear matter (§3.4) 

5. CONCLUSIONS 

The resonator is a universal fundamental structure entering the physical 

structures of the two categories involved in the quantization process: the light and 

the matter. It is a dipole of charges, defined first by Max Planck in order to carry out 

the quantization of light. The Planck’s resonator is electric dipole. In order to carry 

on the quantization in matter, the only existing procedure coping with that of Planck 

is the Procopiu quantization, and asks for a resonator defined as a magnetic dipole. 

Our results can be summarized as follows: 

1) the optical medium accepting dipoles as fundamental constitutive structures 

is the so-called Maxwell fish-eye. This structure can be gotten as a Cayley-Klein, or 

absolute geometry, describing a charge continuum according to Katz’s natural 

philosophy of charge. 

2) the Maxwell fish-eye is a holographic universe, assuming the holography 

defined by coherence properties in the spirit of initial ideas of Dennis Gabor. 

3) the nuclear matter can be described as a holographic universe that can be 

realized as such only with the help of the properties of light. The fields characterizing 

light are generalizing the classical Maxwellian fields, and are close to the modern 

Yang-Mills fields. 



212 Nicolae Mazilu 74 

4) our analysis indicates that the eightfold way is a universal idea in theoretical 
physics. In order to understand the deep meaning of this statement, an observation 
may be in order: the very Fresnel’s physical theory of light is an expression of the 
eightfold way. 
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