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In this paper, exponentiated Rayleigh distribution is considered for Bayesian
analysis. The expressions for Bayes estimators of the parameter have been derived
under squared error, precautionary, entropy, K-loss, and Al-Bayyati’s loss functions by
using quasi and gamma priors.
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INTRODUCTION

The exponentiated Rayleigh distribution has been proposed by Mahmoud and
Ghazal [1]. They obtained the Bayes estimates under gamma prior depending on
symmetric and linex loss functions. The probability density function of
exponentiated Rayleigh distribution is given by:

2 2701
f (x;0)=2a0xe™ [1—e‘alx } ;x> 0. (1)

The joint density function or likelihood function of (1) is given by:

f(x:0)=(2a0) (Hx} exp{(&—l)glog[l—e‘axiz ﬂ @)

The log likelihood function is given by:

log f (x;6)=nlog(2a0)+ Iog(HxJ—azn:xi%(@—l)znzlog[l—eaﬂ. (3)



82 Arun Kumar Rao and Himanshu Pandey 2

Differentiating (3) with respect to 6 and equating to zero, we get the
maximum likelihood estimator of 6 which is given as:

é = nLZi: log [1— e Jl]l . (4)

BAYESIAN METHOD OF ESTIMATION

The Bayesian inference procedures have been developed generally under

squared error loss function:
2
L(@,@jz(@—ej | ©

The Bayes estimator under the above loss function, say, &s is the posterior
mean, i.e..

0s =E(6). (6)

Zellner [2], Basu and Ebrahimi [3] have recognized the inappropriateness of
using symmetric loss function. Norstrom [4] introduced precautionary loss function
given as:

) (é— 9)

0

The Bayes estimator under this loss function is denoted by &p and is
obtained as:

Or =[E(02 )T ®)

Calabria and Pulcini [5] point out that a useful asymmetric loss function is
the entropy loss:

L(5)o[5°—p log,(5)-1]
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where & =—,and whose minimum occurs at & =¢&. Also, the loss function

D>

L(5) has been used in Dey et al. [6] and Dey and Liu [7], in the original form
having p=1. Thus, L (&) can written be as:

L(5)=b[5-log, (5)-1]; b>0. 9)

The Bayes estimator under entropy loss function is denoted by @ and is
obtained by solving the following equation:

A 1 -1
Oe=|E| = . 10
j { (eﬂ wo
Wasan [8] proposed the K-loss function which is given as:
N 2
A (9_ ej
00

Under K-loss function, the Bayes estimator of 6 is denoted by &k and is

obtained as:
1
A B E(Q) 2
O« —{—E (l/@)} : (12)

Al-Bayyati [9] introduced a new loss function which is given as:

2
L(@,@j:@{@—ej . (13)

Under Al-Bayyati’s loss function, the Bayes estimator of 6 is denoted by @ ai
and is obtained as:

(14)

Let us consider two prior distributions of 0 to obtain the Bayes estimators.
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(i) Quasi-prior: For the situation where we have no prior information about
the parameter 6, we may use the quasi density as given by:

gl(e)zeid;ébo,dzo, (15)

where d = 0 leads to a diffuse prior and d = 1, a non-informative prior.

(it) Gamma prior: Generally, gamma density is used as prior distribution of
parameter 0 given by:

9,(0)= %9“‘%‘” 16 >0. (16)

POSTERIOR DENSITY UNDER g, (& )

The posterior density of 6 under g, (€), on using (2), is given by:
ixf " el
(2a0)’ Hx 7 exp| (6-1)D_log [1—e ' } 0
i=1
j (2a0) (ij E exp{ Zlog [1 g Hedde
0

n _a? -1
—HZIog{l—e ! }
i=1

f(0/x)=

0" e

]‘j en—d eaiznlllog{leaxiz }_1d p

0

) N
(;Iog[l—e } j "

I'(n—d+1)

n o1t
—HZIog{l—efaxi }
e i=1

(17)
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Theorem 1. On using (17), we have:

e

i=1

Proof. By definition,

E(6°)=[e6°f (6/x)do

{2'09 [1_e_axi2 J—ljn .
r(n—d+1)

[;Iog[l_eaxf} ] I(n—d+c+1)

r(n—d+1) {Z:‘log [1_e_axi2 TJ

n—d+c+1) N
B ((n—d+1l (Zlog[l e }] '

i=1

O t—38

From equation (18), for ¢ =1, we have:

E(0)=(n—d +1)(i|og 1-e T] . (19)

i=1

From equation (18), for ¢ =2, we have:

E(ez):[(n—d+2 (n— d+l}{2log[1 e? Jlr. (20)

From equation (18), for ¢ =—1, we have:

-1

E(%):(nid)glog[l—eaﬂ . (21)
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From equation (18), for ¢ =Cc+1, we have:

(o)
E(6°)= (n(nd;iz)z LZI g[l eﬂ } | 22)

BAYES ESTIMATORS UNDER 0, (6)

From equation (6), on using (19), the Bayes estimator of 6 under squared
error loss function is given by:

05 =(n—d +1)(Zn:log [1—e’axiz } J : (23)

From equation (8), on using (20), the Bayes estimator of 6 under
precautionary loss function is obtained as:

ép:[(n—d+2 n-— d+1} [Zlog[l e " } ]_. (24)

From equation (10), on using (21), the Bayes estimator of 6 under entropy
loss function is given by:

0 :(n—d)(glog [1—e‘aﬂ_1}_ . (25)

From equation (12), on using (19) and (21), the Bayes estimator of 6 under
K-loss function is given by:

O =[(n—d +1)( ](ZIog[l e ] Jl. (26)

From equation (14), on using (18) and (22), the Bayes estimator of 0 under
Al-Bayyati’s loss function comes out to be:

n -1 -
¢9A|:(n—d+c+l)(ZIog[1—eaﬂ J : (27)

i=1
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POSTERIOR DENSITY UNDER gz (9)

Under g, (0) , the posterior density of 6, using equation (2), is obtained as:

n
2
1

(a0 (TTx Jo =" o] (0 Soa[1-e ][ £ g

I'(2)

f(6/x)= i
| | n _ai=1 Xiz n _aXiz ﬁa a-1.—
g(za‘g) {gXiJe eXp[(H—l)izl‘llog [1—e ﬂr(a)a Y
= G-t e[miznl:log{leaxiz T]a
Tﬁnml e[mglog[le‘”q ]ede
0
gnra-t e[ﬂJriZn;‘Iog[leaxiz T]H

I'(n+ a)/(ﬂ + IZ:: log [1— e T]M

{ﬂ + Zl“ log [1_ - T}nm

= i 0n+a—1
r(n+a) °

{mg.%{leﬂxg ng

(28)

Theorem 2. On using (28), we have:

oy L(n+a+c) n S h
E(e)_—l“(n+a) (ﬂ+glog[l e } J : (29)
Proof. By definition,

E(6°)=[e¢"f (0/x)do
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N , _1\N+a
pribnT] o et
_ 1= j8n+a+c—l e i=1 do
r(n+a) .
N ) _1\N+a
+> log|1-e™
_('B .2:1: g[ } ] I'(n+a+c)
I'h+«a n -\
(n+) {ﬂ+2log[l—eaxiz} ]
i=1
_T(n+a+c) n e -
_—F(n+a) (ﬁ+§log[l e } ] .
From equation (29), for ¢ =1, we have:
n A
E(9)=(n+a)(ﬁ+2|og[1—eaﬂ J . (30)
i=1
From equation (29), for ¢ =2, we have:
n -1\7?
E(Gz):[(n+a+1)(n+a)]£,8+ZIog[1—e‘aﬂ ] : (31)
i=1
From equation (29), for ¢ =—1, we have:
1 1 n 7
E|l=-|=—— log|1-e™ : 32
IR o el A
From equation (29), for ¢ =c+1, we have:
o _1\~(c+D)
E(6’°*1)=F(n+a+c+1)(ﬂ+ZIog[1—e‘aﬂ } . (33)
i=1

I'(n+a)
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BAYES ESTIMATORS UNDER 0, (6’)

From equation (6), on using (30), the Bayes estimator of 6 under squared
error loss function is given by:

05 =(n+a)(ﬂ+zn:log [1—eaxi2} J : (34)

From equation (8), on using (31), the Bayes estimator of 6 under
precautionary loss function is obtained as:

0r = [(n+a+1)(n+ a)]% (ﬁ+glog [1—e’axiz Tj . (35)

From equation (10), on using (32), the Bayes estimator of 6 under entropy
loss function is given by:

ée :(n+a+1)[ﬂ+zn“log [1—e‘axiz }_ ] . (36)

From equation (12), on using (30) and (32), the Bayes estimator of 6 under
K-loss function is given by:

O« =[(n+a)(n+a—1)]é(ﬂ+glog [1—eaxi2}l] . (37)

From equation (14), on using (29) and (33), the Bayes estimator of 6 under
Al-Bayyati’s loss function comes out to be:

gm =(n+a+c){ﬂ+zn:log [1—e’axiz ] j . (38)

i=1

CONCLUSIONS

In this paper, we have obtained a number of estimators of parameter of
exponentiated Rayleigh distribution. In equation (4) we have obtained the
maximum likelihood estimator of the parameter. In equation (23), (24), (25), (26)
and (27) we have obtained the Bayes estimators under different loss functions
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using quasi prior. In equation (34), (35), (36), (37) and (38) we have obtained the
Bayes estimators under different loss functions using gamma prior. In the above
equation, it is clear that the Bayes estimators depend upon the parameters of prior
distribution. We therefore recommend that estimator’s choice lies according to the
value of the prior distribution which in turn depends on the situation at hand.
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