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The aim of this paper is to study the conditions under which a submanifold of a 
Ricci soliton is also a Ricci soliton or an almost Ricci soliton. We give here a 
classification for Ricci solitons and their submanifolds according to their expanding, 
shrinking or steady cases.  
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1. INTRODUCTION 

Let ( , )M g  be a Riemannian manifold. A triple ( , , )M g V   is called a Ricci 
soliton, if it satisfies:  

 1 0
2 VL g Ric gλ+ + =  (1) 

V  is a vector field on M , Ric  is the Ricci tensor of ( , )M g  and V  is a 
potential vector field of the Ricci soliton. Here, VL g  is the Lie derivative of the 
metric tensor g  with respect to V  and λ  is a constant. 

A Ricci soliton ( , , )M g V  is said to be shrinking, steady or expanding if 
0λ < , 0λ =  or 0λ > , respectively. Moreover, if the potential vector field V  is 

zero, Killing or concurrent, then the Ricci soliton is an Einstein. Hence, Ricci 
solitons can be viewed as generalizations of Einstein manifolds. 

A Ricci soliton ( , , )M g V  is a gradient Ricci soliton, if there exists a smooth 
function f  on M  such that V f= ∇ . In this case, the triple ( , , )M g f  is a 
gradient Ricci soliton and we refer to f  as the potential function of the soliton. 
Obviously, a gradient Ricci soliton ( , , )M g f  is trivial, if its potential function f  
is a constant. 
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The notion of Ricci flow was first introduced by Hamilton in 1982. 
According to the definition of Hamilton, a Ricci flow can be given as:  

2ij ijg Ric
t
∂

= −
∂

 

On the other hand, the concept of Ricci soliton appeared after Hamilton 
introduced such above flow in 1982, since the Ricci soliton is the geometric fixed 
point (modulo homothetics and differomorphisms) of the Ricci flow. Also, the 
Ricci soliton appears as singular model for such a flow, analyzing its geometry is 
useful step towards an understanding of the Ricci flow itself. (for details, see 
[10,11]). 

In 2011, Barros and et al. studied the immersions of a Ricci soliton 
( , , )M g V  into a Riemannian manifold ( , )M g  and showed that a shrinking Ricci 
soliton immersed into a space form with constant mean curvature must be a 
Gaussian soliton [1]. In [8], Chen and Deshmukh classified the Ricci solitons 
whose potential vector fields are concurrent, and provided a necessary and 
sufficient condition for such a submanifold to be a Ricci soliton in a Riemannian 
manifold.  

On the other hand, many papers on a Riemannian manifold endowed with 
some geometric structures so that this manifold admits a Ricci soliton were 
discussed by several mathematicians (for details, we refer to [2–5,7,9,13]). 

Motivated by the above studies, our paper is organized as follows: Section 2, 
contains some preliminaries. The next section is devoted to the submanifold of 
Riemannian manifold admitting a Ricci soliton. We point out the conditions under 
which a submanifold of a Ricci soliton is also a Ricci soliton or almost Ricci 
soliton. In Section 4, a relationship between the intrinsic and extrinsic invariants 
(such as scalar curvature and squared mean curvature) of a Riemannian 
submanifold admitting a Ricci soliton is given. Moreover, we establish some 
inequalities to obtain characterizations involving such invariants about a 
submanifold of a Ricci soliton. 

2. PRELIMINARIES 

2.1. Basic Formulas and Definitions for Submanifolds 
Let ( , )M g  be an m − dimensional Riemannian manifold and : M Mϕ →  

be an isometric immersion from an n − dimensional Riemannian manifold ( , )M g  
into ( , )M g . 

The Levi-Civita connections of ambient manifold M  and the submanifold 
M  will be denoted by ∇  and ∇ , respectively. 
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To fix notations, we write here the Gauss-Weingarten formulas: 

 ( , )X XY Y h X Y∇ = ∇ +   (2) 

 X X XV A V V⊥∇ = − +∇   (3) 

for any , ( )X Y TM∈Γ  and ( )V TM ⊥∈Γ . 
For any ( )V TM ⊥∈Γ ,the shape operator and the second fundamental form 

are related by: 

( ( , ), ) ( , )Xg h X Y V g A V Y= . 

The mean curvature vector field H  of M  in M  is given by:  

1

1 ( , )
n

i i
i

H h e e
n =

= ∑  

where 1 2{ , ,..., }ne e e  is an orthonormal basis of submanifold M . 
Moreover, submanifold M is totally umbilical if and only if:  

 ( , ) ( , )h X y g X Y H=  (4) 

for any , ( )X Y TM∈Γ . 
The equations of Gauss and Codazzi are given by the following 

relation
( ( , ) , ) ( ( , ) , ) ( ( , ), ( , )) ( ( , ), ( , ))g R X Y Z W g R X Y Z W g h X W h Y Z g h X Z h Y W= + − (5) 

( ( , ) ) ( )( , ) ( )( , )X YR X Y Z h Y Z h X Z⊥ = ∇ − ∇ , 

for any , , , ( )X Y Z W TM∈Γ  and ( ).V TM ⊥∈Γ  Here, ( ( , ) )R X Y Z ⊥ is the 
normal component of ( , )R X Y Z  and h∇  is given by: 

 ( , )( , ) ( )( , ) ( , ) ( , ).X X X Xh Y Z h Y Z h Y Z h Z Y⊥∇ = ∇ − ∇ − ∇  (6) 

Let P  be a 2-plane section spanned by orthonormal vectors X  and Y . From 
(5), one has: 

2( ) ( ) ( , ) ( ( , ), ( , )).K P K P h X Y g h X X h Y Y= − +  

The Ricci tensor Ric  is defined by:  

 
1

( , ) ( , , , )
n

j j
j

Ric X Y R e X Y e
=

= ∑  (7) 
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where 1 2{ , ,..., }ne e e  is an orthonormal basis of M  and R  is the Riemannian 
curvature tensor of M , for any , .pX Y T M∈  

Furthermore, the Ricci tensor Ric  on M  can be written as: 

( , ) ( , ) ( , )
p pT M T M

Ric X Y Ric X Y Ric X Y
⊥

= +  

for any , .pX Y T M∈  Throughout this paper, we assume that the normal part of 

Ricci tensor Ric  vanishes identically. 
On the other hand, the divergence of any ( )X TM∈Γ  is denoted by ( )div X , 

being given as:  

 
1

( ) ( , , ).
i

n

e i
i

div X g X e
=

= ∇∑  (8) 

For details, we refer to [6]. 

3. SOME PROPERTIES OF THE SUBMANIFOLD OF A RIEMANNIAN  
MANIFOLD ADMITTING A RICCI SOLITON 

The Ricci solitons are natural extensions of Einstein manifolds and self-
similar solutions to their Ricci flow equation, as proved by Hamilton in [10]. In 
[12], Pigola et al. introduced a new class of Ricci solitons, called almost Ricci 
soliton, by taking in equation (1)  λ   as a function. If function  λ  is a constant, 
then the almost Ricci soliton becomes Ricci soliton. Similarly, we say that the 
almost Ricci soliton is shrinking, steady or expanding if the variable function λ  is 
negative, zero or positive, respectively. 

Assumption: Let ( , , )M g V  be a Ricci soliton and : M Mϕ →  be an 
isometric immersion. Throughout the present paper, we take the potential vector 
field V  tangent to the submanifold M . 

We may characterize above notions as follows: 
Theorem 1. Let ( , , )M g V  be a Ricci soliton and  M  be a totally umbilical 

submanifold of M . In this case, the following conditions are satisfied: 
 i) M  is an almost Ricci soliton. 
ii) If M  has a constant mean curvature, then M  becomes a Ricci soliton. 
 
Proof: Since M  is a Ricci soliton, one has: 
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{ }

{ }

1 1( , ) ( , ) ( , ) ( , ) ( , )
2 2

( , ) ( , )
1 ( , ) ( , )
2

( , ) ( , )
0,

V X Y

X Y

L g X Y Ric X Y g X Y g V Y g V X

Ric X Y g X Y

g V Y g V X

Ric X Y g X Y

λ

λ

λ

+ + = ∇ + ∇

+ +

= ∇ + ∇

+ +
=

 

for any , ( )X Y TM∈Γ . Using equalities (5) and (7), there follows: 

 { }
1

( , ) ( , ) ( ( , ), ( , )) ( ( , ), ( , )) ,
n

i i i i
i

Ric X Y Ric X Y g h e e h X Y g h X e h Y e
=

= − +∑  (9) 

where { }1 2, ,..., ne e e  denotes an orthonormal basis of pT M , at .p M∈  Since M  
is totally umbilical submanifold, considering (4) one has: 

 2( ( , ), ( , )) ( , ) .i ig h X e h Y e g X Y H=  (10) 

According to (9) and (10), there follows that: 

 
2 2 22

( , ) ( , ) ( , ( , ) ) ( ( , ) , ( , ) )

( , ) ( , ) ( , ) ( , ) (1 ) ( , )
i iRic X Y Ric X Y g nH g X Y H g g X e H g Y e H

Ric X Y n H g X Y H g X Y Ric X Y n H g X Y

= − + =

= − + = + −
(11) 

From (1) and (11), we have: 

 { }221 ( , ) ( , ) (1 ) ( , ) 0
2 VL g X Y Ric X Y n H g X Yλ+ + − + =   (12) 

which means that submanifold M  is an almost Ricci soliton. Also, assume that 
M  has a constant mean curvature. From equation (12), submanifold M  becomes 
a Ricci soliton, which proves (i) and (ii). 

Recall that the position vector field V  of an Euclidean space is a concurrent 
vector field. Here, suppose that an Euclidean space 6E  is endowed with a 
concurrent vector field V . For an isometric immersion 6: M Eϕ → , we denote by 

TV  and V ⊥  the tangent and normal parts of V  on M , respectively. Inspired by 
some examples of [8], we construct some examples for submanifold of a Ricci 
soliton which provide Theorem 1, as follows: 

 
Example 2. Let 2 3(1)M S E= ×  be a hypersurface of an Euclidean space 

6E  with coordinates ( )2 2
1 2 1 2 4 5 6, , 1 ( ), , , .x x x x x x x− +  Then, ( ), , TM g V  is a 
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Ricci soliton with potential vector field TV , so that TV  is the tangential part of the 
position vector of 6E  and g  is a product metric. For details, we refer [8] (see 
Theorem 4.1, pp.17). 

Now, we consider a submanifold M  of Ricci soliton ( ), , TM g V  with 

codimension 1 (i.e. M  is a hypersurface of  ( ), , TM g V with the position vector: 

( )2 2
1 2 1 2 4 5 6, , 1 ( ), , ,x x x x x x x− +  

so that:  

1 2.x x=  

Then, the tangent bundle TM  and normal bundle TM ⊥  are spanned by: 

1 3 3 1
1 2 3

2 ,E x x x
x x x
∂ ∂ ∂

= + −
∂ ∂ ∂           

2
4

E
x
∂

=
∂ , 

3
5

E
x
∂

=
∂ ,     

4
6

E
x
∂

=
∂  

and: 

1 1
1 2

N x x
x x
∂ ∂

= −
∂ ∂ , 

respectively. By direct calculations, one can see that submanifold M  is totally 
geodesic and the mean curvature vector field H  vanishes identically. Therefore, it 
is obvious that Theorem 1 is satisfied. 

 
Example 3. Let ( )sγ  be a unit speed curve lying on the hypersphere 

2
0 (1)S of 3E  centered of the origin o . Consider the hypersurfaces of ( , )M g  of 
2 6
0 (1)S E×  is defined by: 

2 3 4 5 6 2 3 4 5 6( , , , , , ) ( ( ), , , , , ).s x x x x x s x x x x xφ γ=  

Then, ( , , )TM g V  is a Ricci soliton with potential vector is TV  which is the 
tangential part of position vector V  of 8E  and 1λ = . For details, we refer [8] (see 
Theorem 4.1, pp.17). 
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Now, we consider that a submanifold M  of Ricci soliton ( , , )TM g V  is 
defined by: 

2 0,x =     3 ,x t=    4 cos cos ,x u v=  

5 sin cos ,x u v=    6 sin .x v=  

Then, the tangent bundle TM  is spanned by { }1 2 3, ,E E E , as follows: 

1
3

,E
x
∂

=
∂  

2
4 5

sin cosE u u
x x
∂ ∂

= − +
∂ ∂ , 

3
4 5 6

cos sin sin sin cos .E u v u v v
x x x
∂ ∂ ∂

= − − +
∂ ∂ ∂  

Similarly, the normal bundle TM ⊥  is spanned by { }1 2 3, ,N N N , as follows: 

1
1

( )N s
x

γ ∂′=
∂ , 

2
1 2

( )N s
x x

γ ∂ ∂
= +

∂ ∂ , 

3
4 5 6

cos cos sin cos sin .N u v u v v
x x x
∂ ∂ ∂

= + +
∂ ∂ ∂  

By direct calculations, we obtain: 
 

1 1( , ) 0,h E E = 1 2( , ) 0,h E E = 2 2 3( , ) cos ,h E E vN= −  1 3( , ) 0,h E E =  and 

3 3 3( , ) ,h E E N= −  then the mean curvature vector field 3H N= − , which means 
that M  is totally umbilical – which permits to directly verify that Theorem 1 is 
satisfied. 

Using equality (12), we get the following: 
 
Corollary 4. Let ( , , )M g V  be a Ricci soliton and M  be a totally umbilical 

submanifold of M . Then, the following conditions are satisfied:  
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i) If M  has a constant mean curvature vector and the Ricci soliton 
( , , )M g V  is shrinking or steady (i.e. 0λ ≤ ), then the almost Ricci soliton 
( , , )M g V  is shrinking. 

ii) Suppose that M  is minimal (namely, the mean curvature vector H ) 
vanishes identically). Then, one has the following situations: 

   a) If ( , , )M g V  is shrinking, then  ( , , )M g V  is shrinking. 
   b) If ( , , )M g V  is steady, then ( , , )M g V  is steady. 
 
Remark 5. Let ( , , )M g V  be a Ricci soliton and M  a totally umbilical 

submanifold of M , so that M  has a constant mean curvature. If the potential 
vector field V  is concurrent on M  (namely, XV X∇ =  for any ( )X TM∈Γ ), 
then M  is Einstein. 
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