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Various problems in population dynamics are described by nonlocal reaction-
diffusion equations, where the conventional logistic term for the reproduction rate is 
replaced by some integral expressions. The properties of such equations, including the 
existence and stability of solutions, appear to be quite different in comparison with 
conventional reaction-diffusion equations. In this work, we discuss some nonlocal 
reaction-diffusion equations and their properties. 

Keywords: nonlocal reaction-diffusion equations, pulses, waves. 

1. INTRODUCTION 

Reaction-diffusion equations and systems are widely used in ecology and 
population dynamics in order to study the evolution of biological populations under 
various conditions (see [14] and the references there in). One of the developments 
of the classical theory concerns the models with nonlocal consumption of 
resources, where some integral terms enter the equations. In this work, we discuss 
recent developments in this field. The reaction-diffusion equation: 

 
2

2 ( )u uD F u
t x

∂ ∂
= +

∂ ∂
  (1) 

describes the distribution of a population density u(x; t) depending on the space 
variable x and on time t. The diffusion term in the right-hand side characterizes the 
random motion of the individuals in the population, and the second term 
corresponds to birth and death rates. It is often considered in the form: 

 ( ) (1 )kF u au u uσ= − −   (2) 



 V. Volpert 2 48 

where a and σ are some positive constants, k = 1,2. If k = 1, then we obtain a 
conventional logistic term for the reproduction of the population, which is 
proportional to the population density u and to the available resources 1 − u; the 
last term corresponds to the mortality of population, also proportional to population 
density. The case k = 2 corresponds to sexual reproduction, where the reproduction 
rate is proportional to the densities of males and females [15]. In the simplified 
model with a single equation, they are assumed to be equal to each other. 

Consumption of resources in expression (2) is proportional to population 
density, so that the remaining available resources are conventionally written as 
1−u/K, where K is a positive constant, carrying capacity. Setting K = 1 in the 
dimensionless variables, we write it in the form (2). In a more general setting, 
consumption of resources occurs not only at the spatial point x, where the 
individual is located, but in some area around its average location. In this case, the 
rate of resources consumption is given by the integral: 

( ) ( ) ( , ) ,J u x y u y t dyφ
∞

−∞

= −∫  

where the kernel ϕ(x − y) characterizes the efficiency of resources consumption 
depending on the distance between the average location x and the location of 
resources y. It is a non-negative bounded function. Let us note that, for the sake of 
simplicity, we consider here all real values of x. Alongwith the integral J(u), which 
corresponds to non-local consumption of resources, we also consider the integral: 

( ) ( , )I u u y t dy
∞

−∞

= ∫  

which corresponds to the global consumption of resources proportional to the total 
population density and independent on the individual location. Instead of equation 
(1) we consider equation: 

 

2

2 (1 ( ))ku uD au bJ u u
t x

σ∂ ∂
= + − −

∂ ∂  (3) 

in the case of global consumption. 

 
2

2 (1 ( ))ku uD au bI u u
t x

σ∂ ∂
= + − −

∂ ∂
  (4) 

Let us note that equation (3) becomes similar to the local equation (1) if the 
kernel ϕ(x) is replaced by the δ-function. 

It appears that the properties of these questions, to be discussed in the next 
sections, are different in comparison with equation (1). Namely, we will study the 
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existence of pulses for global equations and the emergence of periodic patterns for 
non-local equations. 

2. EXISTENCE OF PULSES 

Local equation with bistable nonlinearity. Consider equation (1) with 
function F(u) satisfying the following conditions: 

 F(ui) = 0, i = 0,1,2; F′(ui) < 0, i = 0,2 (5) 

Here, u0 = 0 < u1 < u2 and F(u) ≠ 0 for u ≠ ui. Then, equation (1) has a 
positive stationary solution w(x) decaying at infinity, that is, a solution to the 
problem: 

 Dw′′ + F(w) = 0, w(±∞) = 0, (6) 

 

if and only if in(F) = 2

0
( ) 0

u

u
F u du >∫ . The proof of this assertion is elementary, and 

it is omitted. A positive solution of problem (6) is called a pulse solution. 
 
Equations with non-local and global consumption. Existence of pulses can 

be easily studied for equation (4) with k = 2 [14]. Consider the problem: 

 
" (1 ( )) 0, ( ) 0w w bI w w wσ+ − − = ±∞ =   (7) 

(D = a = 1). Set c = 1 − bI(w). 

The problem: 

 2 ( ) 0"w cw w = 0,wσ+ + ±∞ =   (8) 

can be solved explicitly. Denote this solution by wc(x), where subscript c shows its 
dependence on coefficient c in (8). Then, we obtain the equation with respect to c: 

c = (1 − bI(wc)). 

From its solution, there follows that there exists such b0 > 0 that problem (7) 
has two solutions for 0 < b < b0, a single solution for b = b0, and no solutions for b 
> b0. 

 
Stability of pulses. A positive stationary solution of equation (1) decaying at 

innity is unstable. Indeed, let w(x) be a positive solution of problem (6). 
Linearizing equation about this solution, we get the eigenvalue problem: 
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Dv′′ + F′(w(x))v = λv; v(±∞) = 0. 

The principal eigenvalue, that is, the eigenvalue with the maximal real part of 
this problem is real, simple, and the corresponding eigenfunction is positive [16]. 
Since v(x) = w′(x) is an eigenfunction corresponding to the zero eigenvalue, and w′(x) 
is not positive (w(x) is not monotone), then = 0 is not the principal eigenvalue. 
Therefore, the principal eigenvalue is positive, and the solution w(x) is unstable. 

Equation (7), with global bistable nonlinearity, has two pulse solutions if 
constant b is less than some critical value. Numerical simulations show that one of 
these two solutions is stable. This result is important for biological applications, 
since it provides the persistence of solutions interpreted as biological species 
[10,11]. Stability of pulses in this model is not proved analytically. 

 
Systems of equations. The result on the existence of pulses for the above 

formulated scalar equation, in terms of the sign of integral in(F), can be 
reformulated in terms of the sign of the wave speed. Let us recall that the travelling 
solution of equation (1) is a solution u(x; t) = w(x − ct), where c is the wave speed. 
It satisfies the problem: 

 Dw′′ + cw′ + F(w) = 0, w(−∞) = u2; w(∞) = u0.  (9) 

Integrating this equation over the whole axis, we conclude that the sign of the 
wave speed coincides with the sign of integral in(F). Therefore, the pulse solution 
exists if and only if the wave speed is positive. 

In the case of reaction-diffusion systems, the question about the existence of 
pulses becomes much more important, and the existence condition cannot be 
reduced to the sign of the integral of non-linearity. However, it appears that the 
second formulation has the same result, that is, that the pulse exists if and only if 
the wave speed is positive, it remains valid for some classes of reaction-diffusion 
systems [12,13]. Existence of pulses for the reaction-diffusion system of two 
equations in the case of global consumption is proved in [15]. 

 

Bifurcations of pulses for the scalar equation. Integral I(u) ( , )u x t dx
∞

−∞∫  is 

well defined only for functions u(x;t), integrable on the whole axis. Therefore, in 
order to study the emergence of pulses in the case of global consumption, we will 
consider a similar equation: 

 
2

2
0 02 0

(1 ( )) , ( ) ( , )
Lu uD au I u u I u u y t dy

t x
σ∂ ∂

= + − − =
∂ ∂ ∫  (10) 

(b = 1) on a bounded interval 0 < x < L with the no-flux boundary conditions:  
x = 0, 
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L : u/ x = 0∂ ∂  

We look for homogeneous in space stationary solutions of equation (10). If  
b < a/(4L), then this problem has three constant solutions, w = 0, and two solutions 
of the equation: 

 aw(1 − I0(w)) = σ. (11) 

We denote them by w1 and w2 assuming that w1 < w2. 
Consider next the eigenvalue problem for the equation linearized about a 

constant solution u: 

 2
0 02 (1 ( )) ( ) , (0)"Du au I u uu u au I u u u' u'(L)= 0σ λ∗ ∗ ∗+ − − − = =  (12) 

Taking into account (11), we can write it as: 

 2
0( ) , (0)"Du u au I u u u' u'(L)= 0σ λ∗+ − = =   (13) 

We will search its solutions in the form: 

u(x) = cos(nx/L); n = 0,1,2, 

Then we get: 
2 2

0 * ,   ( / ) ,   1, 2,...nau L D n L nλ σ λ π σ= − = − + =  
Hence, the presence of the integral term influences only the eigenvalue 0. 

From (11) we get: 
0 * *(1 2 ).au Luλ = −  

If equation (11) has two solutions, then λ0 > 0 for *u  = w1 and λ0 < 0 for *u  = w2. 
Thus, the problem linearized about solution w2 has negative eigenvalue λ0. 

Eigenvalue 1 can be negative or positive. If it is negative, this solution is stable, 
otherwise it is unstable and another solution bifurcates from it. We can consider D 
as bifurcation parameter with the critical value  

D*=L2/π2. If D < D*, 

then a nonhomogeneous stable solution emerges. Since the eigenfunction cos 
(πx/L) corresponding to the eigenvalue 1 has its extrema at the boundary, then the 
emerging solution also has its maximum at the boundary of the interval. If we 
consider a double interval, then this solution corresponds to the pulse solution. 

 
Bifurcations of pulses for systems of equations. Consider the system of 

equations: 

 
2

2
1 1 11 0 12 0 12 (1 ( ) ( )) ,u uD a u b I u b I v u

t x
σ∂ ∂

= + − − −
∂ ∂

   (14) 
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2

2
1 2 21 0 22 0 22 (1 ( ) ( )) ,u uD a v b I u b I v u

t x
σ∂ ∂

= + − − −
∂ ∂

   (15) 

where: 

0 00 0
( ) ( , ) ,     (v) ( , ) ,

L L
I u u y t dy I v y t dy= =∫ ∫  

on a bounded interval 0 < x < L with the no-flux boundary conditions: x = 0, L : 
∂u/∂x  = 0,  ∂v/∂x  = 0. 

Stationary solutions to this problem satisfy the following algebraic equations: 

 1 11 0 12 0 2 1 21 0 22 0 2(1 ( ) ( )) , (1 ( ) ( )) .a u b I u b I v a u b I u b I vσ σ∗ ∗ ∗ ∗ ∗ ∗− − = − − =  (16) 

Linearizing system (14), (15) about a stationary solution, we obtain the 
eigenvalue problem: 

 

 2
1 1 1 11 0 12 0( ( ) ( )) ,D u" u a u b I u b I v uσ λ∗+ − + =  (17) 

 2
2 2 2 21 0 22 0( ( ) ( )) ,D u" v a v b I u b I v vσ λ∗+ − + =  (18) 

 
and we look for its solution in the form: 

( ) cos( / ), ( ) cos( / ), 0,1,2,...u x p n x L v x q n x L nπ π= = =  

The eigenvalues of problem (17), (18) can be found as eigenvalues of the 
matrices: 

2 2
1 1 * 11 1 * 12

2 2
2 * 21 2 2 * 22

,
(0) ,

,
a u b L a u b L

A
a v b L a v b L

σ
σ

⎛ ⎞− −
= ⎜ ⎟

− −⎝ ⎠
 

and: 
2

1 1
2

2 2

( / ) , 0
(n) ,    1, 2,...

0, ( / )
D n L

A n
D n L

σ π
σ π

⎛ ⎞−
= =⎜ ⎟

−⎝ ⎠
 

If the eigenvalues of the matrix A(0) have negative real parts, then the 
bifurcation of pulses are determined by matrix A(1), that is, if at least one of its 
eigenvalues is positive. 

 
3. ESSENTIAL SPECTRUM AND PROPERNESS 

We now study the spectral properties of the integro-differential operators in a 
more general setting. Consider the system of integro-differential equations: 
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2
1 1

1 1 11 1 12

2

1 1 12

( ,..., , ,..., )

..................................................................

( ,..., , ,..., )

n n n

n n
n n n nn n

u u F u u u u
t x

u u F u u u u
t x

ϕ ϕ

ϕ ϕ

∂ ∂⎧ = ∗ ∗⎪ ∂ ∂⎪
⎨
⎪∂ ∂⎪ = ∗ ∗
⎩ ∂ ∂

 , (19) 

where φij :  → ; φij ≥ 0 on , supp φij = [−Nij ,Nij ] is bounded,  

( ) 1,ij y dyϕ
∞

−∞
=∫  for , 1,..., ,i j n=  while 2

1,..., : n
nF F →  are given functions 

so that 
21( , ).

n

iF C∈  Here *ij juϕ  is the convolution product: 

( * )( ) (x y) u ( ) .ij j ij ju x y dyϕ ϕ
∞

−∞
= −∫  

Denote in the sequel by superscript T the transposed of any n-dimensional 
vector or 
n × n matrix. Let 1( ,..., ) ,T

nu u u=  1(F ,..., F ) ,T
nF =  and   

 11    ϕ
11 1 11 1 1

1 1 1

... * ... *
... ... ... ,      *u= ... ... ... .

... * ... *

n n n

n nn n nn n

u u

u u

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟Φ = Φ =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Then, the integro-differential system (19) can be written as: 

 
2

2 (u,Φ u).u u F *
t x

∂ ∂
= +

∂ ∂
  (20) 

A travelling wave solution of system (19) or, equivalently, of equation (20) is 
a solution of the form u (x,t) = w (x − ct), where c∈  is a constant, called the 
wave speed. If 1( ,..., ) ,T

nw w w=  then ( )( , ) ,i i x ctu x t w −=  i = 1,…, n,  and function 
w verifies the equation: 

 ( Φ ) 0."w cw' + F w, * w+ =   (21) 

Non-local reaction-diffusion equations of this type arise in population 
dynamics (see [1,2,3,6]). The integral term describes non-local consumption of 
resources and intraspecific competition, resulting in the emergence of biological 
species in the process of evolution. 

Consider operator B defined by the left-hand side of (21) as acting from the 
Holder space 2( ( ))nE C α+=  to 0 ( ( )) ,nE Cα=  0 1:α< <   
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Bw = w′′ + cw′ + F(w, Φ * w). 

We are interested in the solutions 1( ,..., )T
nw w w=  of system (21) with some 

specic limits 1( ,..., )T
nw w w± ± ±=  at .±∞  We are looking for solutions iw  of (21) 

under the form ,i i iw u ψ= +  where  ( )i Cψ ∞∈  are chosen so that  (x) wi iψ ±=  

for 1x ≥  and (x) wi iψ −=  for 1.x ≤ −  Thus, equation (21) becomes: 

 ( ) ( ) ( Φ ( )) 0,"u c u ' + F u , * uψ ψ ψ ψ+ + + + + =   (22) 

where  1( ,..., ) .T
nψ ψ ψ=   

Denote by A the operator in the left-hand side of (22), 0: ,A E E→  

 ( ) ( ) ( ,Φ ( ))." 'Au u c u F u * uψ ψ ψ ψ= + + + + + +  (23) 

Linearization of A about a function 1( ,..., )nu u u E= ∈  is the operator: 

 ( ,Φ ( )) ( ,Φ ( ))(Φ )," ' F FLu u cu u * u u u * u * u
u U

ψ ψ ψ ψ∂ ∂
= + + + + + + +

∂ ∂
 (24) 

where i

j

FF
u u

⎛ ⎞∂∂
= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

and i

j

FF
U U

⎛ ⎞∂∂
= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 are the matrices of derivatives of F,…,Fn 

with respect to variables 1,..., nu u  and 1,..., UnU , respectively. 
For the linearized operator L, we introduce the limiting operators L±, that is 

the operators obtained from L by replacing the coefficients of u,u′,u′′, *uΦ  with 
their limits as .x →±∞  Since for w u ψ= + ,  there exist the limits 
lim ( ) ,
x

w x w±

→±∞
=  it follows that *( )u wψ ±Φ + → , so that the limiting operators 

associated to L are: 

 ( , ) ( , )(Φ )." ' F FL u u cu w w u w w * u
u U

± ± ± ± ±∂ ∂
= + + +

∂ ∂
  (25) 

Similar to elliptic problems in unbounded domains [8,9], the limiting 
operators determine the Fredholm property and properness of the integro-
differential operators. 

We study operator A acting from Eμ  into 0 .Eμ . In order to introduce a 
topological degree in a future section, we prove the properness of A in the more 
general case when coefficient c and function F depend also on a parameter 

[0,1].τ ∈  Let 0: ,A E Eτ
μ μ→  [0,1],τ ∈  be the operator defined as: 
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 ( ) ( )( ) ( ,Φ ( ))." 'A u u c u F u * uτ τψ τ ψ ψ ψ= + + + + + +  (268) 

Operator Lτ  linearized about a function u Eμ∈  is: 

 ( ) ( ,Φ ( )) ( ,Φ ( ))(Φ )," ' F FL u u c u u * u u u * u * u
u U

τ τ
τ τ ψ ψ ψ ψ∂ ∂

= + + + + + + +
∂ ∂

  (27) 

The associated limiting operators are given by: 

 ( ) ( ) ( , ) ( , )(Φ )." ' F FL u u c u w w u w w * u
u U

τ τ
τ τ± ± ± ± ±∂ ∂

= + + +
∂ ∂

  (28) 

Assume that the following hypotheses are satisfied: 
(H1) For any [0,1],τ ∈  functions ( , )iF u Uτ  and their derivatives with 

respect to u and U satisfy the Lipschitz condition: there exists K > 0, so that: 

( , ) ( , ) ( )i i| F u U F u U | K |u u |+|U U |τ τ− ≤ − −  

for any 2ˆˆ( , ), ( , ) .nu U u U ∈    

Similarly for / ui jFτ∂ ∂  and /i jF Uτ∂ ∂ : 

ˆ ˆˆ ˆ(u, U) (u, U) (| | | |)i i

j j

F F K u u U U
u u

τ τ∂ ∂
− ≤ − + −

∂ ∂
 

ˆ ˆˆ ˆ(u, U) (u, U) (| | | |)i i

j j

F F K u u U U
U U

τ τ∂ ∂
− ≤ − + −

∂ ∂
 

(H2) ( ), ( , )ic F u Uττ  and the derivatives of ( , )iF u Uτ  are Lipschitz continuous in  
τ,i.e., there exists a constant K > 0 so that: 

0 0| ( ) ( ) | K | |,c cτ τ τ τ− ≤ − 0
0| (u, U) (u, U) | K | |,i iF Fττ τ τ− ≤ −  

 
0

0(u, U) (u, U) | |,i i

j j

F F K
u u

ττ

τ τ∂ ∂
− ≤ −

∂ ∂
 

0

0(u, U) (u, U) | | .i i

j j

F F K
U U

ττ

τ τ∂ ∂
− ≤ −

∂ ∂
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0, [0,1]τ τ∀ ∈  and for all (u,U) from any bounded set in 2 .n   
(H3) (Condition NS) For any [0,1],τ ∈   the limiting equations: 

" ( ) ' ( , ) ( , )( * ) 0F Fu c u w w u w w u
u U

τ τ

τ ± ± ± ±∂ ∂
+ + + Φ =

∂ ∂
 

do not have non-zero solutions in E. 
Theorem 3.1. Assume that functions :ijϕ →  and 2: n

iF →  
(1 , )i j n≤ ≤  satisfy the conditions from Section 1 and hypotheses (H1)-(H3). In 
addition, assume that ( ).ij Cαϕ ∈  Then, operator 0: [0,1]A E Eτ

μ μ× →  from 
(3.8) is proper on Eμ ×[0,1] (with respect to both u and τ).  

The proof of this theorem, given in [4], allows the construction of the 
topological degree for the corresponding operator. Properness and the degree are 
used to study the existence and bifurcations of solutions including travelling wave 
solutions [3,5]. One of the key assumptions here is hypothesis (H3), and its 
stronger form, assuming that the essential spectrum of the operator lies in the left-
half plane for the complex plane. If this condition is not satisfied, then the 
corresponding operator can lose the Fredholm property, and nonstandard 
bifurcations through the essential spectrum can lead to the emergence of periodic 
structures and waves. We consider some examples in the next section. 

4. BIFURCATION OF PERIODIC SOLUTIONS 

Consider equation (3) with k = 1, a = b = 1, τ = 0. It has a stationary solution 
u = 1. 

Linearizing this equation about u, we obtain the eigenvalue problem: 

 ( ) ( )"Du x y u y dy uφ λ
∞

−∞
− − =∫   (29) 

Applying the Fourier transform to this equation, we find the expression for 
the spectrum: 

 2 ( ).Dλ ξ φ ξ= − −   (30) 

Consider as example the kernel ϕ(x) = 1/(2N) for |x| ≤ N and ϕ(x) = 0 
otherwise. Then, ( ) sin( N)/( N).φ ξ ξ ξ=  Since this function becomes negative for 
some ξ , the eigenvalue λ can become positive. In this case, the homogeneous in 
space stationary solution u = 1 of equation (3) loses its stability, resulting in the 
emergence of a stationary periodic solution (Fig. 1). 
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Fig. 1. Periodic solution u(x; t) of equation (3). The values of parameters: k = 1, a =b = 1,  

σ  = 0, L = 1;D = 10-4, N = 0.1,  t = 350. 
 
Instead of usual travelling waves with fixed limits at infinity we observe 

periodic travelling waves where a periodic spatial structure is established behind 
the wave (Fig. 2). 

 
Fig. 2. Propagation of a periodic travelling wave solution of equation (3). The values of 

parameters: k = 1, a = b = 1, σ = 0, L = 1, D = 10-5, N = 0.1, t = 70. 
 
Acknowledgments. The work was supported by the \RUDN University Program 5–100". 
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