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An overview of nonlinear partial differential equation (PDE)-based structural 
inpainting approaches is provided in this paper. The main image interpolation 
techniques based on variational models are described first. Next, the state of the art 
inpainting methods using PDE models of various orders that do not follow variational 
principles are presented. Some of our own contributions in this domain, representing 
variational and PDE-based inpainting algorithms, are also briefly described in this 
work. 
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1. INTRODUCTION  

The image interpolation (completion) process aims at reconstructing the 
missing or highly deteriorated areas of the image as plausibly as possible, by using 
the image information achieved from the known surrounding regions. Another 
widely used term for this domain is inpainting, which has the origin in ancient art 
restoration [1]. The inpainting field has many important applications, such as: 
damaged digital artwork reconstruction, photo and movie renovation, undesired 
object removal, image super-resolution and zooming, and image decompression. 

The interpolation techniques can be divided into three categories: texture-based 
inpainting, structure-based inpainting and combined approaches. While some 
textural interpolation methods are related to the texture synthesis [2], being 
inspired by influential texture synthesis algorithm of Efros and Leung [3], others 
represent exemplar-based techniques [4]. 

Structural inpainting approaches employ information around the missing part to 
estimate isophote from coarse to fine, and to diffuse the information by a diffusion 
mechanism. They reconstruct that missing part of the image by using variational and 
PDE models [5].  
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The state of the art energy-based, or variational, image interpolation 
techniques are described in the next section. The most important PDE-based 
inpainting approaches are presented in the third section. 

We have conducted a high amount of research in the structure-based 
inpainting domain, developing numerous variational and nonlinear diffusion-based 
reconstruction techniques [6-9]. Our main contributions to the PDE-based 
inpainting field are also presented in the following two sections of the article. The 
paper ends with a section of conclusions and a list of references. 

2. ENERGY-BASED STRUCTURAL INPAINTING TECHNIQUES  

Variational (energy-based) structure-based interpolation methods complete 
the image affected by missing part by solving the minimization of an energy 
functional: 
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where the image domain 2R⊆Ω , D is the inpainting domain, the 

inpainting mask is given by 0,1 \ >⋅= Ω λλλ DD  and 0u  is the 
observed image. While minimization of the regularizing term R (u), which contains 
certain a-priori information from the evolving image, is responsible for the filling 

process, the fidelity term ( )∫
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remain close enough to 0u  outside the inpainting domain [5].  
Various inpainting models can be obtained, depending on the regularizer 

function. So, the Harmonic Inpainting is achieved by considering the regularizer 
( ) ∫

Ω
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[1].  

This simple variational inpaiting scheme cannot satisfy the connectivity 
principle, since it does not interpolate properly along the image gaps, and also 
produces too smooth results. 

Some early variational image interpolation techniques were based on the 
Mumford-Shah segmentation model. Such an inpainting model uses the Γ - 
convergence approximation of the Mumford-Shah functional, of Ambrosio and 
Tortorelli [10], being characterized by the minimization: 

 ( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Ω⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∈
−

+∇∈+Ω∇+Ω−∫ ∫ ∫
Ω ΓΩ Ω

∈
∈∈

\

2
2222

0 4
1

22
1min dzzduzduuDu

αγλ   (2) 



3 A survey of non-linear PDE-based structural image interpolation models 35 

where ∈z  is the signature function of the edge set. The inpainting algorithm based 
on (2) has a low order of complexity in terms of approximation and computation 
and a fast numerical convergence. It also preserves the sharpness of the boundaries 
very well. 

An influential variational inpainting approach is Total Variation (TV) 
Inpainting elaborated by T. Chan and J. Shen in 2001 [11]. It is given by the 
following minimization: 
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where 0>α  and ( )DD 11 −⋅= λλ . 
TV Inpainting reconstructs the missing part by minimizing the first-order 

total variation while remaining close to the initial image in the known zones. If a 
low value for α  is selected, then smoothing is directed mainly to the inpainting 
domain. A second-order nonlinear anisotropic diffusion model is derived from (3), 
applying the Euler-Lagrange equation and the steepest gradient descent method: 
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It works successfully and achieves connectivity, but not for large image gaps. 
Also, the TV Inpainting scheme is closely related to the TV Denoising model [ ], 
being derived from it by adding the inpainting mask. 

Total variation based inpainting techniques of higher orders have been also 
developed in the last decades. Thus, the TV2 Inpainting model is obtained by 
considering the second-order total variation as a regularizer component: 
( ) ∫

Ω

∇= dxdyuuR 2 [1,12]. It outperforms TV Inpainting, producing 

better interpolation results and achieving more natural inpainted images. Also, TV2 
Inpainting provides a much better connectivity, being able to interpolate properly 
along large gaps. 

The first and second-order TV regularizations can be combined to get 
improved inpainting results. A combined TV + TV2 Inpainting approach 
reconstructs the image affected by the missing zones using the following 
minimization [12]:  
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where ( )xα  and ( )xβ  are two properly constructed spatially varying 
functions that control the inpainting process. The combined method (4) provides 
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effective results, outperforming both TV and TV2 Inpainting. It completes 
succesfully large inpainting domains, avoiding the creation of blocky structures. It 
is numerically solved using the Split Bregman method [12]. 

Total Generalized Variation (TGV), representing a generalized version of the 
total variation model, involving higher-order derivatives of u and successfully used 
for filtering, can be also applied for interpolation. Some TGV-based inpainting 
approaches have been proposed in [13,14]. Other improved TV-based completion 
methods are Blind Inpainting using l0 and TV Regularization [15] and TV 
Inpainting with Primal-Dual Active Set [16]. 

An important higher-order variational reconstruction model is Euler’s 
Elastica Inpainting introduced by Chan and Shen [17]. This inpainting scheme is 
derived from (1) by applying the following regularizer: 
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where parameters 0, >βα  control the behavior of the inpainting 
scheme and w (u) is a weighing function depending on the histogram of u.  

 

 
Fig. 1. Connectivity results provided by several variational inpainting models 
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Euler’s Elastica Inpainting performs an effective image interpolation, being 
able to reconstruct large missing regions and working properly for noisy images. It 
provides a much better connectivity than TV Inpainting and other TV versions, 
being able to inpaint along much larger gaps. 

Some inpainting examples related to several variational techniques are here 
described, as displayed in Figure 1. They aim to illustrate the connectivity power of 
these models. 

We also developed numerous variational structural inpainting algorithms and 
disseminated them in several articles [6,7]. Let us now describe briefly a 
variational interpolation scheme proposed by us. It has a hybrid character, 
combining second and fourth order diffusions, as follows [7]: 
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with the conductance parameter ( )u u tη νμ ζ= ∇ − , ( ), 0,1ν ζ ∈ . 
The next fourth-order anisotropic diffusion model is derived from it: 
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Its solution, representing the inpainting result, is computed numerically using a 

consistent and fast-converging finite difference method based on an approximation 
algorithm [7]. Our technique provides a proper structural inpainting under both 
normal and noisy conditions. It preserves the edges and other details, and overcomes 
blurring and staircasing. Some method comparison results are provided in the next 
table and figure. Our approach outperforms many state of the art methods, achieving 
higher PSNR values [7]. 
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Table 1. Average PSNR of various inpainting schemes 

Inpainting method Average PSNR  
Proposed variational model 31.95 (dB) 

TV Inpainting 29.96 (dB) 
Harmonic Inpainting 27.32 (dB) 

Mumford-Shah based Inpainting 30.27 (dB) 
Bertalmio et al. model 31.75 (dB) 

 
 
 

Fig. 2. Mandrill image inpainted by several reconstruction techniques 



7 A survey of non-linear PDE-based structural image interpolation models 39 

3. STATE OF THE ART NONLINEAR PDE-BASED INPAINTING TECHNIQUES  

The partial differential equation-based structural inpainting models can be 
divided into two categories. The first one contains the nonlinear PDE models that 
follow variational principles, which means they can be derived from variational 
interpolation schemes like those described in the previous section.  

A nonlinear second-order PDE inpainting model following variational 
principles is obtained by making the derivative of the energy functional at u equal 
to 0 and by applying the steepest descent method next. Thus, we have:  
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Many second-order PDE-based inpainting methods have been developed in 
the last decades, using various selections of the regularizer term, R(u). Also, the 
models given by (9) can be regarded as PDE-based denoising schemes adapted for 
interpolation by adding the inpainting mask. 

The PDE inpainting models that do not follow variational principles are not 
derived from some minimization problems, being directly provided as evolutionary 
differential equations. They include some state of the art high-order PDE-based 
reconstruction algorithms. 

The third order PDE-based inpainting technique proposed by Bertalmio, 
Sapiro, Ballester and Caselles is an influential approach in this field [18]. Their 
interpolation approach propagates the necesary information in the direction of the 
isophotes [18],  being characterized by the third order PDE:  
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where u⊥∇ is the perpendicular gradient of u. This represents a transport 
equation for image smoothness, which is modeled by image’s Laplacian along its 
level lines. The next PDE is obtained by introducing anisotropic diffusion to avoid 
the level-line crossing: 

 

 ( )( )uuguu
t
u

∇∇⋅∇+Δ∇⋅∇=
∂
∂ ⊥   (11) 

where g is a properly selected smooth function. Its goal is to evolve the PDE to a 
steady-state solution, where 0=Δ∇⋅∇⊥ uu , ensuring that information is constant 
in isophotes’ direction. This third-order PDE scheme aims at proving that both 
gradient direction and gray-scale values must be propagated inside the inpainting 
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domain, and shows why high-order PDE are required by a proper interpolation. A 
reconstruction example, representing an old photo inpainted by this approach, is 
displayed in the next figure [18]. 

 

 
Fig. 3. Old photo reconstructed by Bertalmip et. al Inpainting 
 
Another important third-order PDE-based structural inpainting method is 

Curvature-driven Diffusion (CDD) Inpainting, introduced by Chan and Shen 
[1,19], which fixes the drawbacks of their TV Inpainting algorithm by using the 
curvature information of the level lines. It has the form:   
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The CDD model diffuses the smoothness perpendicularly to the level lines, 
preserves their direction and is able to connect them across large distances. CDD 
Inpainting has its own drawbacks, one of them being the noise sensitive character.   

The PDE in (12) is solved using a finite difference-based numerical 
approximation scheme described in [19]. Thus, the flux of the CDD model is computed 

as ( ) ,g kj u
u

= − ∇
∇

so that equation (12) becomes u j
t
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 and is discretized using 

the explicit iterative algorithm: 
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 [ ] )(1 nnn jtuu ⋅∇Δ−=+   (13) 

where tnt Δ=  and [ ] )( nj⋅∇  is the discretization of divergence j⋅∇ , 
which is computed using the half-point central differences [19]. 

Many well-known inpainting tasks, such as disocclusions, old photo 
reconstruction, text and object removal are performed sucessfully using CDD 
Inpainting. A text removal example is displayed in Figure 4 [19]. 

 

 
Fig. 4. Text removal using CDD Inpainting 

 
Some of the influential high-order PDE-based reconstruction techniques are 

based on nonlinear fourth-order PDE models. One of these approaches is the Cahn-
Hilliard Inpainting model [1,20], which uses the next modified version of Cahn-
Hilliard equation (a fidelity term being added) with Neumann boundary conditions: 
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The fourth-order Cahn-Hilliard model is well-posed, the global existence of a 
unique weak solution being proved in [20]. It is solved numerically by applying the 
convexity splitting fast solver [20].  

Cahn-Hilliard Inpainting provides a smooth continuation of the level lines 
into the inpainting domain D, like CDD Inpainting, but it converges much faster 
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[20]. An example of object removal using Cahn-Hilliard Inpainting is displayed in 
Figure 5 [20].  

 

 
Fig. 5. Object removal using Cahn-Hilliard Inpainting 

 
TV – H −1 Inpainting represents another important nonlinear fourth-order 

interpolation method [1,21]. It is given by equation: 
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stepping numerical approximation scheme: 
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The TV – H−1 Inpainting scheme provides effective completion, outperforming 
the TV Inpainting model, but it requires a high number of iterations of the algorithm 
(16), given its complexity. See a TV – H−1 Inpainting example in the next figure. 
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Fig. 6. TV - H−1 Inpainting: 01.0,10 2

0 ∈==λ  
 
LCIS (low curvature image simplifiers) Inpainting is a nonlinear fourth-order 

PDE-based interpolation approach proposed in 1999 [22] and characterized by the 
next partial differential equation: 
 ( )( ) ( )uuuugu t −+Δ∇∇⋅−∇= 0λ  (17) 
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Equation (17) leads to ( )( ) ( )uuuu t −+Δ⋅−∇= 0arctan λ .  
The fourth-order LCIS model is solved numerically by using a convexity 

splitting approach [22]. Because of the complexity of its numerical approximation 
scheme, LCIS Inpainting does not execute fast, providing successful interpolation 
results after hundreds of iterations. Inpainting tasks such as text or object removal 
are performed effectively using the LCIS scheme. 

We have elaborated many nonlinear parabolic and hyperbolic second and 
fourth order PDE models for structure-based inpainting in the last decade [6-9]. 
While most of them follow the variational principle [6,7], some cannot be derived 
from minimization problems [9].  

An effective second-order PDE-based structural inpainting framework 
developed by us was disseminated in [9]. It is based on the following nonlinear 
anisotropic diffusion-based model: 
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Its diffusivity function has the form: 
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where ( )2,0∈δ , ( ]5,1∈ξ , ( )1,0∈ν , { }4,3,2,1∈k  and the conductance 
parameter 

 ( )( ) ( ) tutyxu ζεμη +∇=,, , 1>ε , ( )1,0∈ζ . 
This anisotropic diffusion model is well-posed, its mathematical validity 

being demonstrated in [9]. It admits a unique weak solution that is numerically 
computed using a finite difference-based numerical approximation scheme [23] 
which is stable and consistent to the PDE model (18) [9]. 

This second-order diffusion-based technique reconstructs successfully the image 
by directing diffusion to the inpainting domain while preserving their edges, corners 
and other details. Our method outperforms variational approaches like Harmonic and 
TV Inpainting, achieving better average MSE and PSNR values, and also comparable 
good results to some fourth-order PDE inpainting models, like TV – H-1 Inpainting 
[9]. Some method comparison results are listed in the next figure and table. 

 

 
Fig. 7.  Intpainting results of several PDE-based approaches 
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Table  2.  Average PSNR and MSE values of several PDE inpainting models 

Inpainting algorithm Average PSNR Average MSE 
Proposed AD Inpainting      36.1338 (dB)         15.8380 

Harmonic Inpainting 29.6887 (dB) 69.8576 
Total Variation Inpainting     34.2561 (dB)      24.4047 

TV – H-1 Inpainting      36.3805 (dB)          14.9634 

4. CONCLUSIONS  

A survey on the state of the art structural inpainting techniques using 
nonlinear PDE-based models has been provided here. Two categories of PDE 
interpolation schemes have been addressed in this work, our own contributions in 
each of them being disscused. 

The state of the art variational interpolation approaches have been disscused 
first. They are closely related to the variational restoration models and can be easily 
derived from them by using an inpainting mask. Nonlinear PDE-based inpainting 
schemes could be derived from them. A variational image interpolation technique 
proposed by us, combining second- and fourth-order diffusions, has been 
presented. 

State of the art PDE-based structural inpainting techniques not following 
variational principles have been described next. While the most important of these 
models have higher orders, some influential third- and fourth-order PDE models 
for image completion being described here, we developed a second-order nonlinear 
diffusion-based inpainting solution not following variational principles, which has 
been also presented.   

The structural inpainting techniques proposed by us provide satisfactory 
reconstruction results, work succesfully in noisy conditions and avoid the 
undesired effects. They outperform many of the described state of the art structure-
based inpainting methods, but, unfortunately, they do not work properly for image 
textures. 
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