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In this article we present a discriminative model for tumor detection from multimodal MR 
images. The main part of the model is built around the random forest (RF) classifier. We created an 
optimization algorithm able to select the important features for reducing the dimensionality of data. 
This method is also used to find out the training parameters used in the learning phase. The algorithm 
is based on random feature properties for evaluating the importance of the variable, the evolution of 
learning errors and the proximities between instances. The detection performances obtained have 
been compared with the most recent systems, offering similar results. 
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1. INTRODUCTION 

A tumor is a mass of tissue formed by accumulation of malignant cells. The 
World Health Organization (WHO) defines four grades of tumor: I, II, III and IV. 
The higher the grade, the more malignant the tumor is. Grade I and II are the least 
malignant tumors, called low-grade (LG) tumors; grade III and IV are the most 
malignant tumors called high-grade (HG) tumors [7]. LG tumors are usually benign 
tumors, but they present the risk of growing into HG tumors. The main goal of the 
most efficient treatment of brain tumors is early discovery, identification and diagnosis.  

In the following we will present the best-performing systems based on a 
discriminative model used in multimodal MR tumor segmentation. In this overview, 
we will analyze the number and type of features used and the classification algorithm 
applied, with the goal of comparing them with our model. The performances of the 
systems presented and of our own system are compared in the experimental results 
section. 

D. Zikic [20] and his research team from Microsoft created a discriminative 
model that extracts the attributes from image intensities, as well as from a 
generative model. In his approach, 2,000 context-aware attributes are defined. As a 
classification ensemble, they use 40 decision trees, each having a depth of 20.  
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E. Geremia and the research group from INRIA Sophia-Antipolis, France [5] built 
a discriminative model that associates a vector of 412 features to each point. The 
classification algorithm is an ensemble of decision trees trained on a set of images 
containing 20 HG and 10 LG images. M. Goets [6] also created a discriminative 
model which does not rely on a generative probabilistic model based on a priori 
information from atlases. This model uses 208 attributes, 52 attributes for each of 
the 4 image types. The classifier is made up of an ensemble of Extra-Randomized 
Trees (ERT). S. Reza and K.M. Iftekharuddin [17] created a discriminative model 
which only processes planar images that are axial sections of 3D MRI, without using  
a priori information about the anatomical structure of the brain. The system works 
only with the intensity information of the pixels in multimodal images, extracting 
special attributes based on texton textures and fractal dimension. The classification 
algorithm is again the RF. The final decision is made by weighed voting. A re-
markable performance is obtained from texture information. 

2. DISCRIMINATIVE MODELS 

Discriminative models create a decision function that describes the input 
vectors and assigns each vector to a class. The decision functions do not use a priori 
knowledge of the classification domain, instead, they try to build the necessary 
informational relation based on the training samples. Therefore, the models used in 
segmentation create the relational space based on the intensity information in 
labeled images. Segmentation quality depends on the quality of the images and of 
annotations; however, it is most dependent on the discriminative model created [1]. 

The general structure of such a model is given in Figure 1. In the following, 
we will describe the role of each part with regard to tumor segmentation. 

 
Fig. 1. Discriminative model. 

2.1. DATABASE 

The database is the first and most important step in the discriminative model, 
regarding the acquisition of image samples and the corresponding annotations. 
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The standard image database used for brain tumor segmentation is the BRATS 
2013 [12] clinical image database, consisting of 51 high grade (HG) and 14 low 
grade (LG) cranial MRIs with multiform brain tumors. The images, acquired by 
specialists with 1.5T and 3T scanners, contain four types of modalities: T1, T1c (with 
contrast material Gadolinium), T2 and Flair. We have used BRATS annotation with 
four different tumor structures: the edema, the non-enhancing core, the enhancing core 
and the necrotic core (Fig. 2). 

 
Fig. 2. Tissue annotation. 

2.2. PREPROCESSING 

Another important step is the necessity of image preprocessing. Preprocessing 
consists of noise filtering and standardization of luminosity and contrast; this means 
standardization of image pixel intensities. The preprocessing steps used for the images 
included in the training set have to be subsequently applied for every further 
application built on the model created. 

MRI acquisition is associated with many artifacts. Some of them can be 
eliminated by the medical staff, by setting the acquisition parameters accordingly. 
The images acquired are sufficiently appropriate for human visual analysis, but the 
main problem is that automatic segmentation is significantly influenced by these 
artifacts. 

In our work we have analyzed three important artifacts: inhomogeneity, noise 
and intensity nonstandardness.  

In our previous work [10] we evaluated three inhomogeneity reduction methods. 
Each of these filters has its own advantages and disadvantages. The best-performing 
and most accepted algorithm is N4 filtering [19]. For inhomogeneity reduction in 
MR images, we have applied the N4 filter implemented in the ITK package [8]. 
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The MRI image contains a significant amount of noise caused by human 
interaction with the equipment, equipment parameters and environmental changes. 
The denoising method improves image quality by reducing the noise component 
while preserving the quality of the image. We decided to use anisotropic diffusion 
filtering, implemented in the ITK package [8]. 

In MRI, a weighed image is acquired, in which tissues are distinguished based on 
their intensities. However, these intensity values do not have the same meaning in 
different images, even if the body and the protocol is the same. In segmentation 
and quantification, the absence of context meanings causes different problems. The 
task of MRI standardization is to unify the meanings of intensities. The aim is to 
transform the histogram in order to match it to a predetermined shape [14].  

In preprocessing, we have to eliminate these three artifacts. The order of their 
application to a MRI was studied by D. Palumbo in [15]; he states that the adequate 
sequence for the best segmentation is the following: bias field correction, then 
noise filtering, and finally, intensity standardization. 

2.3. FEATURE EXTRACTION 

Image processing offers many procedures for the extraction of characteristics 
from images. In the field of tumor segmentation there are many studies trying to 
find certain characteristics with a high correlation to the appearance of the brain 
tumor in MRI. Despite these research efforts, no proper feature sets have been 
found yet. That is the reason for using a large feature set, with the features having 
little correlation to the goal of classification. At first, our approach defines a smaller 
feature set, but this is later enlarged for increasing classification performance. For 
each feature we defined many low-level characteristics [13] that describe the 
intensities in the neighborhood of the voxels studied. In our application we have 
used the following features: 

– first order operators (mean, standard deviation, max, min, median, Sobel, 
gradient) 

– higher order operators (Laplacian, Difference of Gaussians, entropy, curvatures, 
kurtosis, skewness) 

– texture features (Gabor filter) 
– spatial context features. 
By extracting all these features for every voxel in all modalities, we transform 

the image segmentation task into a statistical pattern recognition problem. The 
segmentation process obtained with this statistical model also requires analysis on 
the importance of the variable. An appropriate selection of attributes has to be done 
according to the given objects. 

2.4. CLASSIFIER 

The classifier is the main part of a statistical pattern recognition system. In 
the field of data mining there are many well-known classification algorithms, such 
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as Naïve Bayes, C4.5 tree, k-NN, k-means, Neural Networks, SVM, AdaBoost, 
Random Forest (RF). The most important classifiers used in this field have been 
implemented in the WEKA Data Mining Toolkit [9]. Using this toolkit, we have 
compared several classifiers and have chosen to use RF for our application. The 
most important advantages of RF are:  

– high accuracy 
– easy handling of large databases  
– estimating variable importance  
– computing the proximities between instances 
– generating the error as forest building progresses.  
The RF classifier was introduced by L. Breiman [2]. This classifier builds a 

large collection of binary decision trees based on two random processes. First, the 
training set is randomly sampled with replacement for obtaining the bootstrap set. 
The second randomization is introduced in the building process of trees. In each node 
only a small part, the randomly chosen features, are used to search for the best split. 

The training set and bootstrap set have the same size, N and, accordingly, the 
bootstrap set contains an instance of the training set that is different by 
approximately 2/3, while the rest is made up of repeated samples. Approximately 
1/3 of the training samples are left out from the bootstrap set. These instances form 
the out-of-bag (OOB) set. Thus, every tree is grown on its own bootstrap set and 
tested on its OOB set. The overall OOB error is the average classification error on 
the OOB sets over all the trees in the forest. Breiman [2] shows that the upper 
bound for the generalization error is given by: 

( )2
1 1

S
GE ρ= −  (1) 

ρ  – mean value of correlation, S – strength of the ensemble. In order to reduce the 
error, the correlation should be decreased and the strengths increased. An 
interesting characteristic of RF is the general error (GE), which can be estimated 
via the OOB error.  

In order to maintain the OOB error under a given value, we have to optimize 
the following three RF parameters: the number of trees K, the number of randomly 
selected features m and the number of nodes T in each tree [4]. 

For classification purposes, each tree produces a decision individually, after 
which the decisions of all trees of the ensemble are combined to generate a 
decision by [18]: 

– vote of majority, where all trees are equal 
– weighed sum of trees, weights depending on the individual training error 
– Bayesian combination scheme, where weights are considered as approxi-

mations of prior probabilities of classifiers. 
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2.5. FEATURE SELECTION 

In the field of image segmentation, discriminative classifiers are based on 
several local image features. Most authors create their model by using the features 
without any selection criteria, based on their intuition and/or previous experience. 
A more reliable model can be built by using a framework that selects the 
importance of variables from the point of view of classification.  

In the construction of RF classifiers there are two possibilities to evaluate 
variable importance. The first is related to Gini importance, while the second is 
computed based on the variable permutation error. Because the two variable 
importance values depend on the forest structure, the values obtained are somewhat 
random. More confidence is given to the order of variable importance. This order is 
determined by the two measurements in a very consistent way (Fig. 3). By applying 
this conclusion, we can easily eliminate a part of the low-importance variables 
obtained by both measurements [3]. 

 
Fig. 3. Variable importance. 

One main objective of variable selection is to find a small number of 
variables appropriate for a good prediction. For this task, we propose our feature 
selection algorithm, presented in detail in [11]. The main idea of the algorithm is to 
evaluate variable importance on a randomly chosen part of training set several 
times. It builds the cumulative order of variable importance and eliminates a significant 
portion of the most unimportant variables. The algorithm monitors the evolution of 
the OOB error and the selection of important variables stops when the OOB error 
reaches the given limit. 

All these measurements and the RF classifier are in strong correlation with 
the given training set. The number of variables used in the end can be determined 
by evaluating classifier performances on a not previously used test database. 
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2.6. POST-PROCESSING 

Given that the discriminative models use no context information or a priori 
information about the classified object, the results obtained have to be refined by 
post-processing. In this step, anatomic brain structure information from digital 
atlases can help to improve classification performances. This task cannot be 
accomplished without registering the atlas to the brain image analyzed. The digital 
atlas contains information about healthy brains. Registration in atlases is difficult 
because of the large variety of tumor appearance in real images. 

In order to eliminate misclassified voxels, the following spatial relation between 
classes can be used: class2 ⊂ class5 ⊂ class4 ⊂ class3 ⊂ class1 ⊂ class0. In this 
context, we can define morphological filters or apply the neighborhood condition 
provided by Markov Random Fields or Conditional Random Fields. 

2.7. EVALUATION 

The final step of segmentation is evaluation of the results obtained. Seg-
mentation can be assessed by the following coefficients: Dice coefficient, Jaccard 
similarity, precision, sensitivity, specificity [16]. All these coefficients can be evaluated 
from the confusion matrix provided by the classifier. One of their drawbacks is the 
lack of spatial relation of misclassified voxels to their class. Evaluation can be done 
using the Hausdorff distance, which is the supremum of the minimum distance 
between real and segmented surfaces. A more realistic, but subjective evaluation 
can be done by visual inspection of results. 

3. EXPERIMENTAL RESULTS 

The distribution of the four analyzed tissues in one brain, from our experiments, 
is: healthy tissue: 1,500,000 voxels, edema tissue: about 100,000 voxels, tumor 
core: 50,000 voxels, non-enhancing core: 3,000 voxels and necrotic core: 500 voxels. 

In the first step, we extracted 500 image features of each modality, a feature 
vector with 2,000 elements being thus obtained. A 3D brain image (240× 240×150) 
contains about 1,500,000 voxels and each voxel contains a vector of 2,000 features; 
with dimensions of 1,500,000×2,000, the space requirement for it will be 12 GB of 
memory. After balancing the database, the memory requirement for one image set 
will be of 2.4 GB. For analyzing all variations of brain tumor appearance, more 
cases should be considered. In the first step, we used 20 brain image sets for 
training, with memory requirements of 48 GB. This is too large to build the random 
forest classifier (on our hardware and software). Using the algorithm proposed in 
[11], we reduce the number of features to 100. On the first run, almost half of the 
noisy features were dropped, while, along the further 7 steps, the feature set was 
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reduced to 100, maintaining the OOB error under <10%. With this reduced feature 
set, the training database occupies 2.4 GB (for all voxels of 20 multimodal brain 
images). By randomly sampling 5:1 of this database, we obtain 480 MB for the 
final training set, which allows building and optimization of the RF classifier for 
segmentation tasks. The 2.4 GB training database is used in the final optimization 
phase, which consists of tuning the three important parameters of the RF classifier:  
K – number of trees, m – number of tries and T – number of nodes in each tree. 

By accepting the 100 features for each voxel, a new brain will need about  
600 MB of memory for the test set. In the test phase, each instance is sequentially 
classified by the RF classifier, the result being a 3D image with the voxels 
classified. In the post-processing and evaluation steps, only the classified image 
obtained was used. 

Tables 1 to 3 list the performances obtained on the training set, whereas 
Tables 4 to 6 provide the performances for the previously unseen image set. Here, 
we used the following classes, which better present the clinical application task:  

– whole tumor – contains all tumor structures 
– tumor core – contains the entire tumor except the edema 
– active tumor, which is the enhanced core. 
The same results are presented graphically on a brain slice of the training set 

in Figure 4 and of the unseen set (Fig. 5). The black line is the contour of 
annotation. The light gray region is the detection of the edema and the white region 
is the result for the tumor core (containing the necrotic tissue – dark gray). The 
segmentation obtained shows performances comparable to the state-of-the-art 
systems (Table 7) [12]. 

We can assert that segmentation shows good results and detects well the 
edema and tumor zones. The first observation is that many errors occur at the 
delimitation surfaces between tissues. In order to avoid this shortcoming, we 
propose to use another segmentation method, that can delineate these tissues more 
accurately. Level set segmentation, which is highly sensitive to initialization, could 
be applied, the results obtained being surprisingly good. In a future work we will 
propose to apply this method by using the initial contour obtained by our statistical 
segmentation presented in this article. The second observation is that only two 
classes, the non-enhanced tumor and the necrotic tumor, are barely detected. To 
overcome this deficiency, we propose a hierarchical classification in which these 
classes are detected separately, after the classification of edema and core tumor 
voxels. This two-step detection is possible because non-enhanced and necrotic 
tumor tissues are effectively included in the edema and tumor region, respectively. 
The non-enhanced tissue is located between the edema, while the tumor and the 
necrotic tumor occur inside the tumor zone. 
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Table 1 
Confusion matrix on training image 

 Normal Non-enh. Edema Necrotic Enhanced 
Normal 28,719 22 744 55 90 
Non-enh. 19 1,313 2,117 73 1,003 
Edema 1,104 254 22,014 191 503 
Necrotic 390 63 1,116 651 553 
Enhanced 263 545 4,334 252 2,752 

Table 2 
Detection of whole tumor on training image 

 Normal Whole tumor Sensitivity Precision Dice 
Normal 28,719 911 0.969 0.942  
Whole tumor 1,776 37,734 0.955 0.976 0.966 

Table 3 
Detection of tumor core edema on training image 

 Normal Edema Whole tumor Precision Dice 
Normal 28,719 744 167 0.942  
Edema 1,104 22,014 948 0.726 0.809 
Tumor core 672 7,567 7,205 0.866 0.606 

Table 4 
Confusion matrix on a unseen test image 

 Normal Non-enh. Edema Necrotic Enhanced 
Normal 1,462,136 951 43,306 0 1,424 
Non-enh. 0 4 199 0 1,049 
Edema 8,920 208 131,674 0 7,342 
Necrotic 108 78 1,860 0 1,116 
Enhanced 545 262 13,303 0 7,140 

Table 5 
Detection of whole tumor on an unseen test image 

 Normal Whole tumor Sensitivity Precision Dice 
Normal 1,462,136 45,681 0.970 0.993  
Whole tumor 9,573 164,235 0.945 0.782 0.856 

Table 6 
Detection of tumor core and edema on an unseen test image 

 Normal Edema Whole tumor Precision Dice 
Normal 1,462,136 43,306 2,375 0.993  
Edema 8,920 131,674 7,550 0.692 0.778 
Whole tumor 653 15,362 9,649 0.493 0.427 

Table 7 
Compared Dice indexes 

 Our classifier Brats2012 [12] Brats 2013 [12] 
Whole tumor HG 75–86 63–78 71–87 
Core tumor HG 71–82 24–37 66–78 
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Fig. 4. Segmentation results on training images. 

          
                          a                                   b                                 c                                d 

Fig. 5. Segmentation results on unseen test images. 

4. CONCLUSIONS 

The classification algorithm is the main part of the discriminative model. It 
has to be adapted to the purpose of classification and correlated with the available 
attribute in the training, as well as with the test phases.  

The disadvantages of discriminative models are: the extensive training set, 
which has to cover, if possible, all different aspects of the detectable object; very 
time-consuming image annotation process for experts; uniform preprocessing of 
images; necessity of post-processing.  

Each part of the model can influence the performances of final segmentation. 
The most critical parts are the preprocessing steps: inhomogeneity correction, 
intensity standardization and filtering. Another important part is the selection of 
adequate features defined for each voxel. Within this framework, we have 
proposed a feature selection algorithm that can evaluate the importance of new 
feature sets by comparing them with the existing ones. By this method, we can find 
the best feature set for the proposed task. In our opinion, the database used 
considerably limits segmentation performance. Furthermore, the system can be 
optimized with regard to processing time and efficient memory usage. All these 
ideas could constitute a meaningful foundation for future research. 

Authors contributions: László Lefkovits (first author) – 60%; Szidónia Lefkovits 
(second author) – 25%; Mirces-Florin Vaida (third author) – 15%.  
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