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While swarming behavior, widely encountered in nature, has recently sparked numerous 
models and interest in domains as optimization, data clustering, and control, their application to signal 
processing remains sporadic. In this paper I provide a unitary treatment and a review of former results 
obtained in signal filtering and enhancement using swarms. General equations are presented for these 
procedures and stability issues are considered, with examples. The paper overviews several swarming 
model I introduced in previous papers and provides new evidence of the applicability of these models 
in signal processing. In all the models for 1D signal processing, the key idea is that the swarm hunts a 
prey that impersonates the filtered signal. In the 2D models, the signal (image) represents the 
“landscape” over which the swarm moves at a distance, while the swarm interacts with the signal 
(landscape). I provide and discuss details of the underlying theory of the models for processing time-
domain signals and images. While this paper partly follows and summarizes previous papers, it 
nevertheless includes supplementary theoretical and algorithmic considerations and new results for 
both 1D and 2D signal processing. Although following either biological models or physical models in 
swarm algorithms is not generally accepted for technical applications, we prefer to emphasize the 
analogies established by our biomimetic approach with these two groups of models. 
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1. INTRODUCTION – BIOLOGICAL CONSIDERATIONS FOR  
SWARM ALGORITHMS 

Swarming, flocking and packing behaviors are ubiquitous in nature. The 
collective intelligence of a group has advantages in performing vital tasks such as 
defense against predators, foraging for food, efficient long distance travels, and 
better hunting. The swarm is a unit, with agents in the group following the same set 
of rules of movement – the swarming laws, which seem to be as strong as the low 
of physics for the inanimate world. Individual agents sense the location of agents in 
their vicinity, communicate and move in concordance with their neighbors. Their 
aggregated movement becomes the movement of the swarm. The group behaves as 
a distributed intelligence, with behavioral decisions made at the sub-group level. 
Through this distributed intelligence, a swarm is capable of behaviors and of 
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achieving tasks that do not occur at the individual level. Two of these behaviors, 
exploited in this paper and in precedent ones [1–3] are the following of preys and 
the specific movements as a group above rough terrains. In fact, the prey hunting is 
the metaphor I adopted for one-dimensional signal filtering, while the movement 
over landscapes of flocks is the model for the image processing procedures. 

The contributions of the papers [1–3], summarized and expanded here, are 
the following: (1). Proposal of a physics-based swarming model, which includes 
several biologically-inspired elements, in concordance with recent publications in 
observational studies of swarms in nature. (2). A method for interaction of the 
swarm with a signal, where the signal is a prey agent and the swarm acts as a 
predatory swarm in the Hunting Swarm Algorithm (see Sections 3, 4 and 5). The 
signal is enacted by the trajectory of a prey hunted by the swarm; hence the method 
to build filters for one-dimensional (1D) signals based on swarm movements. 
Sections 5 and 7 expose details of the Hunting Swarm (HS) Algorithm (HAS), along 
with results of applying the filtering method on noisy ECG signals). (3). A method 
of making the swarm interact with the terrain, leading to an image processing 
paradigm is introduced in Sections 3 and 6 and applied and exemplified for MRI 
images in Section 8. In section 9, I present conclusions and further research directions. 

Considering the limitations of current physics-based swarming models, and 
the biological literature on communication in swarms in nature, I propose a bio-
logically-inspired swarming model that uses other distance metrics than Euclidean, 
including a distance metric approximating odor perception. The topic is addressed 
in Section 4. 

Because I use in the models some of the features found in natural swarms, in 
the remaining part of this section I briefly review these findings as they appear in 
the literature. Research in natural swarms has pursued several directions, ranging 
from observational biology [4, 5], to biometrics of bird flocking (Ballerini, [6], 
Carere, [7]), video technologies for swarm measurements [4], to discrete and 
continuous models of swarms and flocks (Cucker [8], Kwasnicka [9], Chuang [10], 
Gervasi [11]) and to implementations of models [12–15]. A major area of research 
has been determining the biometrics of swarming through empirical studies, such 
as the STARFLAG methodology developed by Cavagna et al. [4, 5]. Global 
quantities that are relevant to natural swarms include average neighbor distance, 
border properties of the swarm such as neighbor distance at the border, planar 
orientation and anisotropy of the swarm (due to an orientation bias in a direction of 
motion, the swarm is not rotationally symmetric). Individual quantities are three-
dimensional positions of the members of the group, angle of turn of individual 
agents in the group, and individual agent velocities. Many of these features are 
borrowed from biology and included in the models in this paper. 

Another direction of research in observations of swarming in nature is the 
change in swarming behavior while under risk of predation, such as the study by 
Carere et al., [7], which shows that merely perceiving predators in the vicinity of 
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the swarm will determine its behavior on the short term. This feature appears in our 
models and simulations too, see the Sections 3 to 6. In the study [7], com-
munication at the agent-to-agent level is shown to propagate throughout the entire 
swarm, with the swarm collectively adapting to the threat, using response mechanisms 
such as changing the cohesion of the swarm and the parameters of its motion. 

Certain swarm models in the technical literature, such as [16–19], assume that 
distance perception for individuals in the swarm is purely Euclidean, an assumption 
which is not biologically valid. Indeed, distance perception is essential for agents in 
the swarm to determine their neighbors. However, papers in observational biology 
show that smell and chemical recognition plays the key role in communications 
that elicit swarming behavior (Anstey, [20]). Use of communication through odor 
(chemical markers) was found in populations of fish [21], wasps and bees [22, 23], 
and spiders [24]. Other forms of communication for swarms include ultrasonic 
communication, as in certain populations of frogs [25, 26]. Therefore, swarm 
populations in nature use a variety of means to communicate and determine 
neighborhoods. But smell and sound perceptions are known to perform according 
to a logarithmic law of sensitivity, hence the need to consider non-Euclidean 
distances, as advocated in this paper. 

2. SWARM APPLICATIONS OVERVIEW 

The purpose of this section is to put the research on swarm-based signal 
processing into the perspective of technical applications of the swarm models and 
in the context of modeling approaches.  

There are two approaches to modeling swarm behavior in the literature. One 
research direction is the physics-based modeling, whereas individual agents within 
the swarm interact with other agents through particle-like forces. The other direction is 
a probability-based one, such as in the ant colony models. The approach to swarming 
taken throughout the papers reviewed here [1–3] is essentially the physics-based 
model approach. 

In the case of the physics-based approach, the discrete models for the positions 
and speeds of the swarm agents, with forces modeling agent-to-agent interactions 
are the most frequent. The works of Elkaim et al. [16, 17], among many others, 
involve spring-type forces between neighboring agents and a stronger force to the 
leader of the pack. A major drawback of Elkaim’s models is the possibility of large 
discontinuities in accelerations, as well as the use of the center of mass of the 
swarm as a virtual leader of the swarm, which can lead to the swarm splitting due 
to obstacles. In the swarming model proposed in [1-3], these challenges were taken 
into account and prevented. An application-driven approach is in the Olfati-Saber 
and Murray models [18, 19], where the problem of limited communication bandwidth 
between swarm agents is identified (this issue arises from the needs of robotics 
applications of swarm models). Murray and Olfati-Saber conclude that swarm agents 
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need an elementary memory regarding past states of the swarm, and propose 
Markov type I and type II models [18, 19], thus making a connection between 
purely physical models and the probabilistic ones. The memory effect is inherently 
present in discrete time linear filtering and is also present in the swarm-based 
signal processing procedures in [1–3]. The time- and space-averaging used in [1-3] 
confer to these procedures an intrinsically statistical nature. Yet another approach 
involves node-to-node interactions on a graph network, as is the case of [27]. The 
graph-based features are not involved in the procedures described in this paper and 
in [1–3].  

A topic of interest in physics-based swarming models is whether the swarming 
behavior is altered through evolution, in particular in response to predator-prey 
interactions, as in [9]. Evolutionary capabilities can be added to virtually all models 
discussed in this section; actually, several papers already quoted used evolution as 
a tool for optimizing swarms. 

Apart from introducing a physics-based swarming model that is biologically 
more plausible than certain literature models, the research in [1–3] also discusses 
two applications of the model, the first to filtering noisy ECG signals, and the 
second to processing a class of MRI images. The research direction in [1–3] is 
distinct from other work in related fields, such as the papers by Ramos et al. [28, 29], 
Huang et al. [30, 31], and Ma et al. [32], and attempts to introduce a set of methods 
for signal processing via physics-based and biomimetic swarm algorithms.  

The efficiency of swarms compared to individual agents in performing certain 
tasks has sparked substantial research into swarming models and algorithms applicable 
to robotics. Behavioral aspects of swarming have been applied to social networking, 
particle physics, data clustering algorithms, and models for the evolution of digital 
organisms, among others. The vast applicability field of swarming behavior is 
exemplified by uses in forensics [12], particle physics [10], document clustering 
[13], social networking [14], extensively in robotics [15–17]. Similarly, ant colony 
algorithms have been extensively applied to image segmentation by Ramos et al., 
Huang et al., and Ma et al. [28–32], but their approach is distinct to the one 
presented in [1–3]. The models presented in this paper are suitable for application 
in almost all fields mentioned above. 

3. THE SWARM LAWS: MODEL EQUATIONS – OVERVIEW 

Swarming takes place according to a set of equations that govern the 
movements of the agents in the pack. These equations have three types of components. 
The first type comprises “physical” forces like the inertia and the friction forces. 
The second class of forces includes the interaction forces inside the pack. Finally, 
the “external” forces that produce the movement of the swarm are the interaction of 
the agents with the hunted prey and the interaction with the environment (terrain). 
Throughout the paper, I use the notations in Table 1. 
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These are two types of inter-agent (“internal”) forces. The first type refers to 
attractive forces that keep the pack together; the second type is repulsive and 
prevents agents from colliding one with the other. The agents are endowed with an 
elementary memory and with awareness to the global state of the pack, moving 
accordingly. 

The models I use in this research are based on the expression of forces that 
act on the individuals (agents) in the swarm. The force along the x  direction, )(iFx , 
acting on agent i  is composed of three main terms:  

),(),()()( ,,internal, piFjiFiFiF xexternalVj xxfrictionx
i

++= ∑ ∈
 (1) 

where the notation iVj∈  signifies that we take the contributions from all neighbors 
j  in the vicinity iV  of the agent i , and the notation ),( ji  signifies that the force 

depends on agents i  and j . The force externalF  is due to the prey, denoted by p. The 
equation (1) holds for the y  and z  motion directions too. 

Table 1 

Symbols 
α  constant multiplier, 

force expression 
Φ  potential or pseudo-

potential  
)(ts  signal (time 

dependent) 
β  constant multiplier, 

force expression 
  u  generic variable for 

yx,  and z  
γ   ia  acceleration agent i  iii zyx ,, coordinates of agent 

i  
δ  time step d  distance F  forces 

2,1, ηη  powers in 
denominator of forces 

mind  distance where the 
sign of the inter-
agent force switches 

),( khG  pixel Gray level  

µ  friction coefficient )(, td teri distance from agent 
to terrain 

iV  Vicinity of agent i  

uλ  constants in the force 
proportional to pSd ,  

(1D filtering) 

),( pid  distance between 
agent i and the prey 

1D , 2D single dimensional 
(e.g., time-
dependent), two 
dimensional (e.g., 
image) 

ϑ  constant in the 
expression of non-
Euclidian distance 

),( jid  distance between the 
agents ji,   

COG Center Of Gravity 

ρ  radius of region 
where repulsive 
forces act 

im  mass of agent i  HS Hunting Swarm 

τ  delay in discrete time ir  position vector, 
agent i  

A, B, C, 
AB 

constants in forces 
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The internal cohesion of the swarm is managed by agent-to-agent attraction 
and repulsion forces, which act upon neighboring agents. In order to prevent 
collisions among neighboring agents, a repulsion force acts upon two neighboring 
agents if the distance between them is less than a threshold mind . An attraction force 
acts upon neighboring agents otherwise. The reason of using repulsive forces is to 
prevent the swarm collide and merge into a single point. Notice that the repulsive 
forces are inherently included in the spring-like force type of model for swarms 
used in [18, 19].  

An example of aggregation forces that satisfy the above conditions is (2), [2], 
where the coefficient of the repulsion is α  and the coefficient of the attraction 
force is β :  
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where βα,  are positive constants, ir  denotes the position vector of the agent i . The 
overall swarm cohesion force acting on agent i  due to its neighborhood is 

∑ ∈ iVj
jiF ),(internal , where the sum extends over the neighborhood of the agent only. 

The neighborhood radius is ρ . Note that the distance function ||),( ji rrjid −=  may 
be chosen as non-Euclidean, as discussed for natural swarms. The forces acting on 
agent i  in the x , y , and respectively z  directions, due to the neighborhood of i  
are, for discrete time:  

∑ ∈
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),(
)1()1()1,,(),( internal,  

(3) 

where by the notation ),( ti , I refer to the agent i  at current moment of time t . 
Expressions of potential forces, which I use in the models for inter-agents 

forces, have the general forms [1–3]:  
(i) For the repulsive forces, for a one-dimensional space: 

11 η

−
−=

ij

ij
ij d

xx
kF , 1ρ≤ijd , 1k >0, 1ρ  >0, N∈η1 . (4) 
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(ii) The potential-derived attractive forces have a similar expression, 

22 η

−
=

ij

ij
ij d

xx
kF , 21 ρ<<ρ ijd , 2k >0, N∈η2 , 2 1ρ > ρ . (5) 

The constants in the above equations are parameters of the signal processing 
system. 

Notice that the expressions of the internal forces (2)–(5), either attractive or 
repulsive, are similar to gravitational and electric potentials. In fact, neglecting the 
discontinuity at the boundaries mind  and 2,1ρ , these forces are derived from potential 
functions. Kim [33] used previously to [1–3] artificial potential functions to model 
the attraction towards the goal. I use a similar approach, but with different potential 
functions, moreover also including repulsive forces, which replace the attractive 
ones starting with a given distance. 

Because true potential functions require continuity, subsequently, the 
potentials acting in the bounded regions delimited as above will be named pseudo-
potentials. Taking into account that the forces are given by (pseudo-)potentials, the 
basic model of the movement of an agent is expressed as 

i

i

i i i 1 1 i j 1j V

2 2 i j 2j V

m r (t) r (t) (r (t ), r (t ), )

(r (t ), r (t ), ).
∈

∈

= µ + λ ∇Φ − τ − τ ρ +

+λ ∇Φ − τ − τ ρ

∑
∑

 (6) 

In (6), im  is the mass of the particle i ; )(tri  is the position vector of the 
particle; τ  is a delay; 2,1ρ  are distances defining the range of the potential action; 

1Φ  and 2Φ  are the potentials producing the forces (like the ones in (4), (5)), 2,1λ  
are constants of the model. The definitions adopted for the pseudo-potentials will 
further differentiate between the models used in various applications. In (6), we 
neglected the prey. The delay stands for the communication (propagation) time, 
considered however independent on the distance between agents. 

Equation (6) represents a (set of) nonlinear second order differential equations 
indexed by i , where the nonlinearity comes from the term in r , which is a sum of 
two types of terms based on the gradients of the pseudo-potential functions 2,1Φ . 
The type of nonlinearity depends on the form of the potential functions. The first 
term in the right side of (6) is essential in determining the stability of the system. 
Indeed, it represents, for 0>µ , a friction-type force, making the system dissipative, 
thus asymptotically stable. A higher value of µ  implies a faster damping of the agent 
movement. Physically, the choice of the friction force is appropriate for the motion 
of the agent in an idealized fluid of low viscosity and with no turbulence, which is 
biologically plausible [34, 35, 36]. The coefficient µ , interpreted in physical models as 
a friction coefficient, is a constant for the runtime of a simulation and is the same 
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for all agents in the swarm; in addition, it is in the range 10 ≤µ≤ . I assume that the 
friction forces have components proportional to the respective velocity component, 

ufrictionu vF µ=, .  
The set of equations (6) must be completed with constraints that are not 

known to the physical laws, but that are required by any reasonable biological 
model. Due to limits in energy stored in the muscles of the organisms, and due to 
limits in the friction forces used by organisms to propel themselves, the 
accelerations that organisms can obtain by self-propelling are limited for each type 
of being, max|| ar < . In addition, the velocities of each species is limited a to value 
specific to the species, due to metabolic and thermal dissipation considerations, 

max|| vr < . Moreover, for similar reasons as for the linear acceleration and velocity, 
the angular acceleration and velocities, that is the acceleration and velocity of 
changing direction must be limited. In fact, we always used these restrictions in all 
the equations of the swarms, although most of the time they were not actually 
operating (because of the small variation of the processed signals). 

We further need to complete the basic model (6) for accounting for the 
hunting activity of a pack. We assume that the hunted prey exerts an attractive 
force on the swarm. This force, which acts at the level of each individual in the 
swarm, depends on the distance between the prey and the individual. Adding it as a 
new term in equ. (6), we obtain the hunting equations 

)),(),(()),(),((

)),(),(()()(

33222

111

ρτ−τ−Φ∇+ρτ−τ−Φ∇λ+

+ρτ−τ−Φ∇λ+µ=

∑
∑
∈

∈

trtrtrtr

trtrtrtrm

piVj ji

Vj jiiii

i

i    (7) 

and 

max|| ar < , max|| vr <  (8) 

where the index p  denotes the prey. The above equation seems homogeneous, but 
it is not, because of the last term, which depends on the vector pr , where pr  is 
depending on time in a yet unspecified manner. It is easy to see that replacing pr  
with, for example, tα , the equation becomes non-homogeneous. Also notice the 
delay τ  in the term in r , which is equivalent with a memory effect. 

Equation (7) assumes that the hunting driving force exerts at an individual 
level. If we assume, in contrast, that the hunting is performed as a global entity by 
the swarm, we should replace the prey-individual force with a force still exerted on 
every individual but depending on the distance from the prey to the pack. It is 
convenient to represent the pack by its center of gravity; therefore, the hunting 
equation (7) is modified as  
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)),(),((

)),(),(()),(),(()()(

33

222111

ρτ−τ−Φ∇+

+ρτ−τ−Φ∇λ+ρτ−τ−Φ∇λ+µ= ∑ ∑∈ ∈

trtr

trtrtrtrtrtrm

pCOG

Vj Vj jijiiii
i i  (9) 

where COGr  is the center of gravity of the swarm, ∑ ∈
=

swarmk kCOG rr . Other variations 
of the basic system of equations (7) will be presented subsequently. The models 
(6)–(9) have the set of parameters represented by τρρρλλµ ,,,,,, 32121 , and the 
constants in the potential functions. 

The model is still not complete until we add a model of interaction of the 
swarm with the objects around. I will describe a single model of interaction, 
suitable for flocks of birds flying over a terrain and for shoals of fishes swimming 
over the seabed. The swarm-terrain interaction is modeled as an attracting force 
when the distance from the individual to the terrain is larger than a value, 
respectively as a repulsive force when the distance is smaller than the threshold. 
We can choose various ways to define the distance from an individual to the terrain, 
the simplest being the distance between the individual and its vertical projection 
point on the terrain. Another reasonable variant is to determine the distance to a 
point on the terrain situated along the projection of the current velocity vector, in 
front of the vertical projection with a length proportional to the current velocity 
(“predictive” distance). Taking into account the terrain, but neglecting the prey, the 
movement is described by 

))(),((

)),(),(()),(),(()()(

,4

2211

tdtr

trtrtrtrtrtrm

terii

Vj Vj jijiiii
i i

Φ∇+

+ρΦ∇λ+ρΦ∇λ+µ= ∑ ∑∈ ∈   (10) 

where ))(),(( ,4 tdtr teriiΦ∇  is the potential that generates the interaction force between 
the terrain and the individual i , and )(, td teri  is the distance between the terrain and 
the individual i . Above, the delay was not included in the equations. To equ. (10), 
the constraints (8) must be added. We use the model (10) in the image processing 
procedure, where the “terrain” is constituted by the surface of grey levels, ),( yxG , 
or, discretized in pixels, ),( khG . 

When we discretize time in (6)–(10), we obtain, for example for (10) and 
assuming that the delay is null, 0=τ , 

)],[],[()],[],[(

)],[],[(/])1[][(]1[

33222

111

ρΦ∇+ρΦ∇λ+

+ρΦ∇λ+δ−−µ=+

∑
∑

∈

∈

trtrtrtr

trtrtrtrtam

piVj ji

Vj jiiiii

i

i  (11) 

where ]1[ +tai  is the acceleration of the i  particle at the next time moment and δ  
is the timestep. Appropriately defining the prey trajectory )(trp  and initial conditions 
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should complete the models. For physical and biological reasons, the accelerations 
and the velocities of the agents in a swarm are bounded by values that are species-
dependent, max|| aai < , max|| vvi < . Further elaborations of the models represented by 
the equs. (6–11) will be shown in the subsequent sections. 

Recall that, in all the above models, the sums are over the subset of 
individuals that are in the vicinity of the individual denoted by i . The concept of 
interaction-in-vicinity plays a crucial role in swarm models. In natural swarms, 
individuals within the swarm interact with other individuals in their immediate 
vicinity, which causes a subgroup of the swarm collectively decision-making, the 
decision further propagating to the remainder of the swarm through neighbor-to-
neighbor communication. In the scenario of responding to threat as mentioned 
above, visual communication is not sufficient. Individuals toward the center of the 
swarm may not be able to see the predator; the individuals closer to the predator, 
who broadcast a warning to all individuals in the swarm, instead warn them. 
Swarm behavior is strongly dependent on the concept of a neighborhood, which in 
turn is defined by the distance between individuals in the swarm. A spherical 
bubble may crudely exemplify the neighborhood of a particular individual in the 
swarm: others within the radius of the bubble will receive communications from 
and respond to that individual.  

The models in equs. (6)–(10) are significantly more complex than the basic 
equation governing a swarm according to [18, 19]: 

∑ ∈
+−=

iNj iiji tbtxtxtx )()]()([)(  (12) 

with the initial conditions ii zx =)0(  and 0)( =tbi . Above, x  is a spatial coordinate, 
ji,  denote agents of the swarm, b  is due to an external force (bias). The left hand 

side of the equation represents the velocity of an element, while the terms under the 
sum in the right-hand side are similar to elastic forces, )( 0 xxF −κ= , where κ  is 
the elastic constant and 0x  is a fixed position. For the swarm, x  stands for the position 
of the agent ix  and 0x  is replaced by that of the prey, Px . In case of consensus 
algorithms, the above equation in discrete time and without the term ib  is [18, 19]: 

∑ ∈
−⋅+=+

iNj ijijii txtxacttxtx ])[][(][]1[  (13) 

where ija  are constants and t  denotes here a discrete time moment. Under certain 
conditions, the swarm is stable, which in terms of consensus theory means that the 
swarm asymptotically reaches a consensus [18, 19].  

Subsequently, I provide a few implementation details. The forces in the 
swarm model create accelerations that are computed in discrete time as: 
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∑ −

−−−
−=+ ηj

ij

ij
iu td

tutu
kta

]1[

]1[]1[
]1[

11,  (14) 

where u  stands for yx,  or z  and iua ,  is the acceleration in the direction u  of the 
agent i  due to the repulsion at small distances from the other agents in the pack, or 
due to attraction at larger distances. 

I use the first order approximations of the derivative, ])1[][(][ −−δ= tututu , 
where u  is a coordinate variable, t  is a discrete variable standing for time, and δ  
is the step for time discretization. Then, the inertial force along the u  direction is 

])1[][( −−= tvtvmum uu , where uv  is the velocity along the u  direction and m  is the 
mass, which I assume unitary for all agents in the pack. Based on the acceleration, 
according to the last equation, the change of velocity is computed as  

][][]1[ ,,, tatvtv iuiuiu δ+=+ . (15) 

In (15), δ  is the time step interval and represents an important parameter in 
the simulations. Larger values of δ  make the pack respond faster to the signal, but 
can produce overshoots when the signal varies fast. I used values of δ  between 0.5 
and 2 for best results.  

The change in velocity due to the friction is ufrictionuu vctmFv ./, −==∆ , where 

the constant includes µ , the time step, δ , and the inverse of the mass, 1−m . For 
ease of writing, subsequently I denote by µ  the constant in the change of the 
velocity due to friction, ][]1[ tvtv uu µ−=+∆ . More details on the force-based approach 
to the swarming model, as well as more on the function ijd  in a 3-D space, the 
swarm movement equations and the biological significance of swarm parameters, 
are discussed [1–3]. 

4. DISCUSSION OF MOVEMENT EQUATIONS AND NON-EUCLIDEAN  
SWARM DISTANCE PERCEPTION 

The neighborhood of agent i  is dynamic because the neighbors j  of i  can 
change over time (the neighborhood is dynamic in all applications of this model, as 
the set of neighbors iV  of agent i  is recomputed for every timestep). The dynamic 
vicinity is computed using a fixed-radius model in which the neighbors j  of i  are 
determined based on the condition that the distance between the two agents 
satisfies ρ≤),( jid  where it is considered that ρ  is the radius of a spherical 
neighborhood with agent i  at its center. Neighbors who are closer to i  than the 
distance mind  are subject to a repulsion force; otherwise, neighbors are subject to 
an attraction force. 
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While attraction and repulsion forces are responsible for the internal cohesion 
of the swarm, the swarm is not driven across the input image by the internal forces. 
An external force is necessary to drive the swarm across the input image. Unlike 
literature models, such as those of Murray et al., [18, 19] and Elkaim et al. [16, 17], 
where the purpose of the swarm dynamic is given by a constant bias in the velocity 
of the swarm agents, the proposed model here is a predator-prey model in which 
the swarm (predator agents) is attracted toward a prey. The agent-prey force acts on 
every agent in the swarm. This is equivalent to a forcing factor in the equations of 
motion of the swarm. Therefore, in the signal or image processing swarm model, 
there are three types of forces that act upon a given swarm agent i : internal swarm 
attraction/repulsion forces between i  and all its neighbors j , external force acting 
upon agent i  from the prey p , and friction forces.  

The friction coefficient µ  is a constant for the runtime of a simulation. This 
expression of friction force corresponds to the motion of the agent in an idealized 
fluid of low viscosity and with no turbulence, which is biologically plausible.  

The external force acting on every agent of the swarm is an elastic force that 
sets the goal for the swarm to follow the trajectory of the prey p . From a physical 
point of view, this agent-prey force ensures that every agent is attracted to the prey. 
The force of interaction between the input signal (image) and the swarm agents is 
modeled as a prey-agent force given by another type of potential:  

zyxutututpiF piuuexternal ,,)),1()1((),,(, =−−−⋅λ=  (16) 

where uλ  are coefficients. Therefore, the equations of motion of the agent i  are 
forced second-order nonlinear differential equations where the forcing term is 
given by the trajectory of the prey. Since the equations depend on the agent index 
i , the dynamic of the swarm is that of a coupled system of nonlinear differential 
equations of the following form: 

Njituuuuu pujiii ≤≤λ=Ψ+ϕ+ ,1),(),()(  (17) 

where the coupling is done by the term ),( ji uuΨ  (the swarm cohesion forces) and 

N  is the number of agents in the swarm. The initial conditions are the positions, 
speeds, and accelerations of all swarm agents at timestep 0=t . The average of the 
accelerations iu  at every timestep t  represent the pixels of the three output images. 
The image-swarm interaction is discussed in detail in the following section. Notice 
that linearizing the coupled system of differential equations would result in a 
system of coupled linear, damped, oscillators. The local behavior would be similar 
to that of the model by Elkaim [9, 10] in that locally the forces would be elastic. 
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NON-EUCLIDEAN DISTANCE PERCEPTION 

The movement equations discussed above do not necessarily require the 
distance function ),( jid  to be Euclidean. While the use of Euclidean distance in 
literature seems natural for determining agent interactions, this choice is not justified 
by biological facts. In biological swarming, the distances between individuals are 
determined through a means of communication that allows swarm members to 
determine their relative distance, based on odor, hearing, and vision. Recent 
research on locust swarming showed that odor was mediating neighbor interactions 
(Anstey, [20]). There is no evidence that odor is producing measurements based on 
the Euclidean distance. The use of non-Euclidean distance metrics might be valuable 
for image enhancement using swarm processing algorithms. As an example, 
proposed here is a logarithmic distance function, which has been applied in the 
resulting swarm filter to input images. The logarithmic distance function is: 






 −+−+−ϑ+= 222 )()()(1log),( jijiji zzyyxxjid  (18) 

where values of ϑ  were ranging from 1 to 10 in increments of 1 per simulation. 
The output images using the logarithmic distance did not show any improvement 
over the input images, and this distance metric was not used for further image 
processing application testing. Nonetheless, the analysis of non-Euclidean distances 
for the swarm algorithm is a direction for future work. It requires designing distance 
functions that enable the emphasis of desired features in the input images. 

5. HUNTING SIGNALS – THE HUNTING SWARM  
ALGORITHM FOR SIGNAL PROCESSING 

In this section, I suggest and exploit an analogy between signal filtering and 
the natural hunting packs. I use this analogy to produce an algorithm for nonlinear 
signal processing. The analogy has two main players: the prey and the hunting pack. 
The prey does not collaborate to the signal processing; instead, it enacts the signal. 
The pack performs a virtual hunting and in so doing, it produces the output (processed) 
signal as the trajectory of the center of mass of the pack. The hunting pack model 
has many new features that give reason to consider it a new swarm model. 

If one considers the swarm center of mass, thanks to its aggregate motion, the 
swarm can act as a noise filter for signals. Moreover, due to the inherent non-linearity 
in the movement equations of the swarm agents, the collective swarm motion may 
act as a feature extraction filter for images, and thanks to the inertial component of 
the swarm, may prove efficient at extracting features from noisy images. The 
challenge remains to find a means to link the signal to be filtered to the swarm 
equations of motion. 
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Signal s(t) 

Prey position #1 

Prey position #2

Swarm elements and 
directions of the forces  

Fig. 1. Sketch of the operation of the swarm as  
signal processing system in discrete time. 

Figure 1 depicts a sketch of a simplified processing procedure. In this sketch, 
the swarm agents take positions according to movement equations governed by 
inter-agent forces and to agent to prey forces. The prey moves in discrete time 
along the signal. The agents are attracted by the prey, thus tending to follow the 
prey. Consequently, the center of the swarm describes a trajectory in the plane. That 
trajectory is the result of `processing' the prey trajectory, i.e. the signal, by the swarm.  

 
Fig. 2. 3D Sketch of the operation of the swarm as signal processing system. 

Figure 2 shows a sketch of the procedure in three dimensional (3D) space. In 
this sketch, the prey moves along a trajectory represented by )()( tstx p = , 

)()( tsty p = , )()( tstz p =  and represents the input signal )(ts , while the center of the 
pack represents the output signal. These associations of all prey coordinates to the 
signal and of the center of gravity of the swarm to the output signal in the 
processing procedure are essential in the principle of the 1D filter proposed in [1–2] 
and discussed here. There are four available choices for the output signal, namely, 

COGout xts =)( , COGout yts =)( , COGout zts =)( , 3/)()( COGCOGCOGout zyxts ++= . I used 
frequently the last representation for the output signal in the 1D filtering procedures 
because it gave the best results, but I found also exceptions, depending on the 
processed signal and noise.  

The use of this metaphor in signal de-noising is based on the hypothesis that 
hunting swarms are able to filter out undue, noise-like changes in the trajectory of 
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the prey during the hunting. Moreover, swarms might use a simple collective 
adaptation of its behavior to closely follow the prey when the prey had the chance 
to take a larger distance. These hypotheses were verified during simulations, as 
demonstrated by the results for this section. The HS filters are causal, meaning that 
they take into account only previous values of the signal to generate the current 
value of the filtered signal. The nonlinearity of the filters becomes apparent during 
simulations, because the results are not scale-invariant. This means that the same 
input signal waveform is filtered differently when rescaled. Due to this, we need to 
normalize noisy signals to their peak-to-peak value before filtering. 

We assume that the prey moves independently of the movement of the 
hunting swarm. This hypothesis is unsuitable for biological or physical modeling 
purposes, but it is required by the task I deal with, because the signal, enacted by 
the prey, should remain independent of the processing. On the other side, the prey 
attracts the hunting swarm. I used a third order, nonlinear, elastic-type attraction 
force with the expression: 

0,,)()( 21
3

21,; ≥−+−= AAuuAuuAF ipippiu  (19) 

where pu  are the coordinates of the prey and 1A , 2A  are model constants. 
Including the contribution of the prey to the acceleration of the agents, the equation 
(6) rewrites 

3
21,,, )()(][][]1[ ipipiuiuiu uuAuuAtatvtv −+−+δ+=+  (20) 

where I assume that the δ  factor is included in the constants 1A , 2A  without 
changing the notations. The position of the agent at time step 1+t  is obtained as 

][][]1[ , tvtutu iuii δ+=+ . 
The restrictions regarding the limit values in acceleration and in the change 

of direction are added; these restrictions have intuitive biological counterparts 
already discussed. I skip details here, but I used these limits in the swarm processing 
system whose results I describe. The position of the center of the swarm is 

∑ =
=

N

i iS tu
N

tu
1

][1][  (21) 

where iu  represent the coordinates of the positions of the N  agents in the swarm. 
The modeling of the adaptive behavior [1]. The individuals in a biological 

swarm are aware of the behavior of the swarm as a group and adjust to it. 
Therefore, assuming that in a hunting pack the agents are aware of the relative 
position of the pack and the prey, they will adjust their speed according to that 
relative position. Namely, assume that whenever the distance from the center of the 
pack to the prey becomes too large, every agent will adapt by increasing its 
velocity by a factor proportional to Sp uu − . So, if Duu Sp ≥− || , an increase in 
velocity )(, Spiu uuBv −=∆  occurs for all the agents. This conditional increase of the 



                                                               Horia Mihail Teodorescu                                                        16 160 

agents’ velocities stands for an elementary adaptation to the momentary conditions 
of hunting. From the point of view of the HS filtering algorithm, this adaptive 
behavior means better results in case the signal has fast transients or fronts.  

The choice of the forces governing the swarm is based on considerations 
related to the dynamic behavior. These considerations are quite transparent and 
intuitive at the physical level. For example, the use of the third order, nonlinear, 
elastic-type force increases the speed of reaction of the swarm to fast changes in 
the signal, while the use of limits in acceleration and limits in the change of 
direction of the agents insures that the agents and the swarm have limited 
overshoots. The use of odd powers in the forces expressions are also rationally 
motivated: even powers loose the direction information in the relative positions of 
the agents and the prey. 

6. SWARM-IMAGE INTERACTION 

An image is represented by a matrix M  with elements indexed over N∈kh, , 
where ),( kh  represent the positions of the pixel (the ranges for these indices 
correspond to the dimension of the image, maxmax , KH ), and the values in the matrix 
represent grayscale levels (range 0 to 255). The number of timesteps corresponds 
to the number of pixels maxmax KH ×  in the input image. Each timestep t  
corresponds to a different pixel in the image, as follows: starting with the first 
horizontal line in the input image ( 0=h ), traverse each line in the input image in 
order left-to-right 0=k  to 1max −= Kk  and store the grayscale value of the current 
pixel ),( kh  corresponding to timestep kKht +⋅= max  into the prey's x , y , and 
respectively z  coordinate values: 

{ }
khuup khGtu

,;
),()( ⋅χ=  (22) 

where ),( khG  denotes the grayscale value for pixel ),( kh . The use of different 
coefficients zyxu ,,=χ  allows the application of three different swarm filters on the 
same input image. Computing the average of the swarm agents' accelerations at 
every timestep t , for the x , y , and z  directions of motion allows the output of 
three images that are obtained from converting the )(tuavg  values of the swarm center 
of mass into grayscale values. If the values are above the grayscale value of 255, 
they are truncated to 255 in the resulting image (the same holds for negative values, 
which we truncate to 0). The resulting images varied significantly based on the 
values of the χ  coefficients. 

The swarm’s positions, speeds, and accelerations are pseudo-randomly generated 
for 0=t  as initial conditions. The values of all parameters in the algorithm are 
fixed at the initialization step. Also in the initialization step all values of px , py , 
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and pz  are computed and stored. The accelerations of a given agent i  depend on 
determining the forces acting upon i  from its neighbors iVj∈ . The implementation 
has been done in C. In some implementations, we preferred to use an expression in 
the form piS,pi FCFBFAF ,internal ⋅+⋅+⋅= , where CBA ,,  are seen as “gains” associated 
to the respective forces. This convention was useful in make the adaptation of the 
constants faster. 

7. TIME-DOMAIN (1D) SIGNAL PROCESSING RESULTS 

HS ALGORITHM FOR 1D SIGNALS 

The Hunting Swarm Algorithm introduced in [1] is essentially a new nonlinear 
filtering algorithm derived as a combination of several approaches in the literature 
and with a method of mapping the signal filtering process into a swarm dynamics. 
The Hunting Swarm filtering was demonstrated on a set of benchmark ECG signals 
with intrinsic and added noises. The results were compared in [1] with those 
obtained with the average and median filters. 

Biological signals have wide bandwidth and may be affected by various 
noises. The first stage in processing such signals consists of filtering them in order 
to achieve a good signal to noise ratio (SNR). This task is often challenging because of 
the wide band of the signals and of the noises. Consequently, numerous papers 
have been published recently proposing new filtering methods for ECG signals (see 
[1] for recent references on ECG signal processing). 

The mechanics of the HS processing is revealed by the representation of the 
trajectories of all the agents in the pack and by a representation of the dependency 
of the evolution of the center of the pack with respect to the processed signal. The 
“hunting” process has two phases. In the first phase, the pack, which is assumed to 
start from random initial conditions, is structuring itself and evolves toward an 
almost stable configuration [1–3]. The transitory regime of swarm structuring may 
last about 100 time steps, its duration primarily depending on the initial positions 
and on the friction forces [1–3]. 

 
Fig. 3. Example of movement of a sub-population of the swarm following the signal. 
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After the transitory behavior, the swarm remains almost stable, despite its 
continuous movement driven by the prey. Only when the signal has very fast 
variations, the swarm may be partly de-structured and needs some time to recover 
its equilibrium. This regime of dynamic stability is shown in Figure 3 for a swarm 
including 55 agents; only the trajectories of a few agents are shown. 

 

 

Fig. 4. Two examples of noisy ECG signals filtering based on HS method. Parameter values are 
=δ 1.4, γ  = 0.985, =µ  0.3, A=1.5, γ = 0.985. 

I exemplified the results I obtained with the hunting swarm (referred hereafter as 
HS) signal processing method applied to ECG signals in [1]. For determining the 
usefulness of HS filtering, I tested the swarm filters with signals from the 
benchmark database PhysioBank ATM (Goldberger et al., [37]). Two types of tests 
were carried on: (i) filtering ECG signals from PhysioBank that are (intrinsically) 
noisy, and (ii) filtering clean signals to which controlled noise is added. The first 
type of tests is needed for determining if the new filters are able to solve a real-life 
problem; the second type of tests allows us to investigate the capabilities of the 
filtering procedure under various controlled conditions. Paper [1] extensively 
exemplifies the HS filtering of noisy signals from PhysioBank ATM [37], for the 
signals Fantasia f1y07 and Apneea ECG A01. The results of HS filtering presented 
in Figure 4 to 6 are from the same database. The trajectories of the agents of a 
swarm of 55 agents during the “hunting” process  are averaged to obtain the center 
of the pack trajectory in Figure 4. These examples in Figure 4 demonstrate the 
filtering capabilities of the HS method. 
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Fig. 5. Example of two effects in swarm filtering – the time lag and the change of the waveform  

due to inertia (equivalent to non-linear low-pass filtering). 

Subsequently, I add a few results for clarifying the swarm behavior when the 
parameters in the swarm equations change. In the first place, Figure 5 evidence the 
delays that appear between the signal (prey) and the center of the hunting swarm 
(output signal). Next, I show how some of the various parameters of the swarm 
drastically influence the results. For example, as expected, a too large friction 
coefficient would produce a slower “catching” of the signal when the signal has 
large swings, like the QRS complex. However, the slowing down is not the same 
on the upper and lower front of the impulsive signal, because of the nonlinearity in 
the swarm behavior and of the memory effect. This is seen in Figure 6, where the 
results (filtered signals) are obtained for the x coordinate of the center of gravity of 
the swarm with the same parameters =N 15, γ = 0.985, =µ  0.5, but with different 
parameters A,δ , and a friction coefficient µ  =0.35. 

   
Fig. 6. =δ  2.5, A = 1.0. Middle: =δ  2.0, A=0.5. Right: =δ  2.0, A=1.5 

Because the filters are causal, there is a delay between the produced output 
value and the current value of the signal. For the numerical evaluation of the 
performance of the HS filters, for example for applying the mean square error 
criterion, we need to determine the lag of the filter. I determined the corresponding 
lag for a filter with specified parameters by minimizing the MSE between the 
signal and the HS output, for signals not corrupted with noise, according to the 
formula: 

∑ −+=τ
2

1
2

0 ])[][(min
t

t ck
tskts  (23) 

where 1t , 2t  are the limits of the interval of determination (I used 1t =200, 2t =950), 
cs  is the output signal, and 0s  the input signal. The results for such a filter are 
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given in [1], showing that the lag of this filter is τ  = 3. The true MSE obtained 
with the filters is determined after the lag is removed. Notice that the lag is variable 
and can not be predicted beforehand. Using a non-causal swarm filter would not 
solve the lag problem completely. The occurrence of the lag does not influence the 
quality of the filtering. It only affects the manner of computing the MSE value, 
which is a secondary issue. 

The MSE errors of the swarm filter, for various adjustments of the lag and a 
comparison of the results after adjustment of the lag with the standard median and 
average filters are given in [1], for several noisy ECG signals. The results reported 
in the quoted paper show that the swarm filters may outperform the standard ones, 
but much work remains to be done for analyzing the influence of the parameters of 
the swarm on the results and for the tuning of the parameters for specific cases. 
Examples of sets of values of the parameters of the swarm used in the simulations 
are given in [1]. The average, median, and swarm filters have been applied with 
rectangular windows. I multiplied all signals in the cited database by a factor of 10 
before processing. Comparison of the filters on a different signal is shown in [1]. 
There are cases, reported in [1], when the swarm filter preserves the QRS complex 
much better than the average and median filters. 

DISCUSSION OF THE 1D FILTERING PROCEDURE 

Although I used the analogy with the hunting process, the presented algorithm 
might be regarded as well as a social process of agreement of a group with the 
followed independent agent (called in the rest of the paper ‘the prey’), represented 
by the signal. Also note that, while the HS model is similar with the one of swarms 
with leaders, it is still different, because the leaders are assumed to be influenced 
by the rest of the group, while the model acts independently from the behavior of 
the “followers” group.  

The HS processing method is highly nonlinear and hence sensitive to the 
amplitude of the signals. While good results are obtained with the parameters I used for 
signal amplitudes in the ranges seen in the figures, there is no guarantee that the 
filtering is efficient for other ranges of amplitudes. Although the algorithm is )(nO  
in the number of input signal samples, the calculations at each step involve looping 
over the swarm, moreover involve many multiplications. As a result, the processing 
is time consuming. A swarm of 55 agents, with 41 =η  and 42 =η , implemented in 
a C++ (not optimized) program that also writes more that 10 files on the disk, takes 
about 3 seconds to process 2500 samples of input signal. This means that the 
process can be performed in real time for ECG signals at a sampling frequency up 
to about 800 Hz. 

The Hunting Swarm filter produces smoother output than the average and 
median filters of order 11 (see [1]). The results are not exactly the same for 
different program executions. The method is not perfectly deterministic, as the 
swarm starts with random conditions, moreover several configurations of the 
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swarm may have the same or similar internal energy, thus allowing the swarm to 
follow close but not identical trajectories when following the same prey. The 
system is not guaranteed stable; a wrong choice of a single parameter, as a too low 
friction coefficient, or a too large number of agents in the swarm can make the 
swarm behavior oscillating. As far as the swarm remains stable, the number of 
agents in the swarm was found to have less influence on the filtering error than 
parameters like µ  and constants in adaptation. 

The Hunting Swarm Algorithm may work remarkably well when the parameters 
of the swarm are trimmed according to the processed signal and noise peculiarities. 
However, the trimming procedure is not transparent enough at this stage of 
development and the use of genetic algorithms or other evolutionary methods to 
improve the behavior of the swarm is desirable. The main advantage is that the 
Hunting Swarm filters leave the signals that have fast as well as slowly varying 
regions only slightly altered, while removing a consistent part of the noise. In this 
respect, I found that the Hunting Swarm filters behave better than the basic average 
and median filters and combinations of them. I conclude that the Hunting Swarm 
Algorithm might be a candidate in filtering signals with non-stationary, wide 
bandwidth noise, where simpler filters can not cope. Further research is needed to 
extensively compare the swarm-based filters with other types of nonlinear filters. 

8. IMAGE SWARM PROCESSING METHOD AND  
APPLICATIONS FOR MRI IMAGES 

The goal of the algorithm presented in the previous section was to remove 
noise from inherently noisy 1-D signals. Here, I deal with image processing in 
view of filtering and feature detection. The problem of images (2D signals) is 
different and requires significant modifications to the algorithm presented in the 
previous section.  

 
Fig. 7. Part of the input mammographic image, from NIH, by Holland and Frey, [38] (left). Feature 
extraction using the z-acceleration (middle) and x-acceleration (right panel) of the center of mass of 

the swarm as differentiator filters and x = 30, z = 10 (sections of figures from [2, 3]). 

For determining the power and the limits of the swarm image processing, we 
performed simulations on two abnormal mammographies from the NIH (Holland 
and Frei, [38], see Figure 7, left). The area of interest in the input images consists 
of the calcified deposits. The calciferous deposits produced by cancer are depicted 
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in the input images by an arrow. The problem in mammography imaging is to de-
blur the image and to eliminate the useless details for evidencing the micro-
calcifications. Typical image enhancement procedures, as contrast manipulation 
and histogram equalization are only partly effective in this respect, as they 
emphasize various useless details at the same time with the micro-calcifications. In 
fact, histogram equalizers may further mask the calcification into the details of the 
scene. In contrast, after the swarm filtering, the elements of interest are shown over 
a flat, almost uniform gray surrounding. The nonlinear filter emphasizes these 
calcium deposits as in Figure 7. However, the swarm processing results depend on 
the processed image and may produce results similar to the ones obtained based on 
histogram manipulation.  

Simulations were performed to empirically determine ranges of values for the 
parameters that result in usable output images. During the simulations, the 
parameters of the algorithm were empirically determined such as to emphasize the 
calcium deposits with respect to the surrounding tissue in the mammograms. The 
filtered output images were produced either using the acceleration of the center of 
mass of the swarm or the speed of the center of mass of the swarm as the filter. Swarm 
size was varied between 5 agents, experimentally determined to be the minimum 
size of swarm that would affect the input image, and 50 agents, in increments of 5. 
Maintaining all other parameters constant, swarms larger than 25 agents had the 
same effect on the input image as swarms of size 25 agents. Details of the equations 
used and of the parameters in the equations are given in [2].  

As the emphasis in the MRI Mammography application is on feature 
extraction, the aim of the algorithm presented in this Section is to act as a 
differentiator filter. As seen in the output images, the values of the accelerations of 
the center of mass of the swarm are used in the output images. Subsequently, I 
present comparisons with other differentiator filters and improvements of the 
results in this section by using other filters in conjunction with the swarm filter. 
Figures 8, 9, and 10 show results obtained with typical filters. For filtering with a 
Laplacian of Gaussian, I used the matrix from http://homepages.inf.ed.ac.uk/rbf/ 
HIPR2/log.htm, while for sharpening filter, the matrix used is from http://www. 
nist.gov/lispix/imlab/filter/sharpen.html. 

  
Fig. 8. Image filtered with the Sobel filter and with a version of Laplacian, wL1  

(mask wL1 = [-1, -1,-1; -1,-8,-1; -1,-1,-1]). Original images from NIH, by Holland and Frey, [38]. 
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Fig. 9. Result for Laplacian of Gauss, matrix wLG (weighted Laplacian of Gaussian), with rescaling 

of the gray levels of the resulted image (left), respectively result for sharpening  
with the convolution mask wSharp [-1,-1,-1; -1,9,-1; -1,-1,-1], with rescaling of  

the gray scale (right). Original images from NIH, by Holland and Frey, [38]. 

  
Fig. 10. Same sharpening mask, wSharp, but without rescaling (left). Sobel, wS mask (wS = [1,2,1; 
0,0,0; -1, -2, -1]), without rescaling (right). Original images from NIH, by Holland and Frey, [38]. 

 
Fig. 11. Corner filter 1, threshold 100 (see text) and Corner filter 2, threshold 100 (different directions 

for the gradients). Original images from NIH, by Holland and Frey, [38]. 

The corner filters are implemented taking into account the intuitive meaning, 
namely, two gradients along orthogonal directions must both have large values (larger 
than a specified threshold). Thus, the corner filters are implemented using the 
condition  


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= ⊥
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where ∇ , ⊥∇  are two gradients along orthogonal directions, θ  is a threshold, and 
),( jiC  is the resulted corner image. The results obtained with the corner filters are 

shown in Figure 10. Notice that I used empirically adjusted thresholds for the 
corner filters, to improve results. 

The above examples show that the combination of swarm processing and 
corner filters put into evidence well the features of interest in the images. 

RESULTS FOR DIFFERENTIAL FILTERS IN CONJUNCTION  
WITH SWARM FILTER 

The images obtained by swarm filtering can be further enhanced using 
standard differential filters. I tested all filters presented in the previous section on 
the swarm produced images. Some of the results are shown in Figures 13, 14, and 
15. All images in this section were produced by applying the same type of linear 
filter to the images obtained by swarm filtering corresponding to Figure 7. The two 
images in Figure 7 middle and right were dealt together, as a single image (including a 
small vertical white space between them).  

 

Fig. 12. Laplacian filter applied to the images obtained after the swarm filter  
(x-acceleration filter, left, and z-acceleration filter, right). 

 

Fig. 13. Sobel filter applied to the image obtained after the swarm filter. 
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Fig. 14. A weighted differential filter applied to the same image  

produced by the swarm. 

Notice that in all cases, applying the swarm and then applying a differential 
linear filter produces by far better results than any differential filter (see Figures 
12–14), moreover better results than the swarm filters themselves. In all cases 
shown in the figures in this section, the use of a linear filter after the x -acceleration 
swarm filter and after the z -acceleration swarm filter clearly obviates the calculi in 
the image (and the vestiges of the arrow pointing to them). While the original  
z -acceleration swarm filtered results look somewhat poorer than the x -filtered 
ones, after the differential filtering, the image obtained with the z -acceleration 
filter shows shapes that are closer to the shapes of the calculi formation. Also, notice 
that one of the empirically trimmed corner filters produces comparable results. 

Concluding, in [2, 3] and in the research reported here I performed two classes of 
image processing. The first is based on swarms and includes acceleration-type 
filters and velocity-type filters. The second class of filters includes 'standard' linear 
filters, namely several types of first order differential filters, like Sobel and 
gradient filters and second order differential filters like Laplace filter and Laplace-
weighted-Gauss filters. The visual comparison of the images obtained by standard 
filtering methods and by the swarm filters show that acceleration-type swarm filters 
perform better. Then, I applied standard filters to the image resulted through swarm 
filtering. Several combinations of such filters produce the best results, consisting in 
the clear segmentation of the region of interest (calculi). I conclude that such 
combination of filters may be a useful addition to the set of tools already used in 
the image filtering of medical images. 

9. CONCLUSIONS AND FURTHER DIRECTIONS 

This paper was mainly concerned with the reviewing of the models proposed 
in [1–3] in the context of the swarm theory and applications and with generalizing 
the models of swarm signal processing. The swarming models proposed in [1–3] 
and extended and further demonstrated in this paper in signal and image processing 
include several novel elements that place these models in the more biologically-
plausible category of force-based swarming models.  



                                                               Horia Mihail Teodorescu                                                        26 170 

The applications and methods involving the proposed swarming models 
include features developed specifically for signal processing and image processing 
[1–3]. In the first place, a new method for filtering noisy 1-D signals has been 
proposed and tested, with results shown for ECG signals. The Hunting Swarm 
signal filtering method introduces the principle of filtering by creating a virtual 
prey agent that enacts the input signal as its trajectory, this virtual prey agent being 
followed by a group of predatory agents. The proposed method for filtering noisy 
ECG signals [1] showed advantages over basic filters (such as averaging or median) in 
terms of noise reduction, while preserving the signal shape characteristics. Moreover, 
the method can be executed in real-time with limited computational resources. 
Further study and extensions of the work in [1] may result in industrial-level use of 
the method.  

Regarding image processing, a feature extraction method was proposed for a 
3-D version of the swarming model. The feature extraction method also uses the 
Hunting Swarm principle. The feature extraction was exemplified on MRI mammo-
graphic images, where it produces results similar, but slightly better, than standard 
filters like Sobel filtering and corner extractors. The swarming method for feature 
extraction provides far better results when used in conjunction with simple 
differential filters.  

I suggest four directions for further research. The first is to determine new 
potential functions and to implement new distances in the models, to improve the 
signal processing capabilities as well to enhance the bio-mimetism of the models. 
The second direction is the further improvement of the adaptability of the swarms 
for diverse tasks, as noise reduction in images and segmentation. The Third direction 
regards evolutionary swarms. Although a genetic algorithm approach to evolving 
the swarm has also been implemented and was exemplified for a biological scenario of 
hunting, much work remains to be done in combining the evolutionary and the 
swarm approaches in signal processing. The fourth direction for future research is 
to extend the area of applications of the hunting swarm and of flying over terrain 
swarm models.  

The problem of self-adaptation of the swarm population can be of interest 
from an evolutionary perspective as well. In the case of natural flocks and swarms, 
parameters at the swarm-level influence the functions at the individual level. For 
example, consider the metaphor of the hunting swarm as applied in [1] to signal 
processing. Hunting swarms do exist in nature, where energy consumption, both at 
the individual level, and at the swarm-level, is essential in determining evolutionary 
success of a population. Therefore, the collective performance of the hunting, as 
measured by total kinetic energy consumed during a hunting session by the group 
of predators and measured by the success rate of the hunting, can determine 
evolution at the individual level. Considering energy expenditure at the swarm-
level as the fitness criterion, one could question how evolution at the individual 
level is influenced by the collective functions of the swarm. This question remains 
unsolved and could be a rewarding further direction of the research started in [1].  



27                                         Swarm based signal processing. A review 171 

Before concluding, I mention a non-trivial problem that may prove to be a 
valuable direction for investigation. In Section 8 and in [2, 3], I introduced an 
application of the swarm algorithm to image processing, in particular to feature 
extraction in MRI images. Initially, the input signal had been the grayscale value of 
the pixels in the image. However, applying the swarm filter to a pre-filtered signal, 
such as the result of applying a Laplacian filter to the input image, yielded different 
results, as did applications of other differential filters to the image, which then 
became the input to the swarm filter. A question proposed to me by Prof. Todd 
Zickler (personal communication) yields another direction of further research: 
determining the characteristics of the swarm filter in different spaces. The swarm 
filter may take as input, for example, the magnitude of the gradient at every pixel. 
With substantial modifications, the swarm filter may also take as input, instead of 
scalar values, a vector, for instance a vector of two components of the gradient of 
pixels in the 2-D image.  

In conclusion, the concept of swarm signal processing, proposed in [1–3] and 
reviewed and extended in this paper, demonstrated its capabilities. The corresponding 
processing methods are suitable for building powerful tools in the domain, with 
numerous applications in various fields. 
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