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In 1984 C. Shibata investigated the theory of a change which is called a  -change of Finsler
metric [10]. On the other hand, in 1985 a systematic study of geometry of hypersurfaces in Finsler
spaces was given by M. Matsumoto [6]. In § 1, according to Shibata [10] we shall prepare the

terminology and notations for the sake of argument. In § 2, we derive a condition for a  -change to
be projective [10]. In § 3, we find that a totally geodesic hypersurface F" ! remains to be a totally

geodesic hypersurface F” ! under the projective  -change. In the last section, we get the main
result that Finslerian hypersurfaces given by the projective  -change are projectively flat on
condition the original Finsler space is projectively flat.
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1. PRELIMINARIES

Let M" be an n-dimensional differentiable manifold and F" =(M",L) be
a Finsler space equipped with a fundamental function L(x,y)(y' =x') on M".

For a differential one-form p(x,dx)=b,(x)dx’ on M", we shall deal with a
change of Finsler metric which is defined by
L(x,y) > L(x,y)= f(L(x,y), B(x,¥)), where f(L,B) is a positively
homogeneous function of L and £ of degree one. This is called a f -change of

the metric.
In this section we shall use the following notations [10]:

fi=f)=af/oL, o= f5)=0f 0B,
foE fu) =0 f[oLOL,  f,(= f.,)=0"fOLOp,

etcetera.
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Since L = f s a positively homogeneous function of L and f of degree
one, we have

f=fL+f,B, Lfi,+ B =0, Lf,, + 3, =0. (0.1)
For the later use we put
p=AM/L, =1 4,= 1, (0.2)
Paying attention to /, = 0,L , from (1.1) we have
L=fL fb (0.3)

Differentiating this by )’ , we have the angular metric tensor f_zy =L 818 jl_,
on F":

h,=ph, qmm, (0.4)

g

where the covariant vector m; is defined by
m=b  y/L (1.4))

It is noted that m, is a non-zero vector orthogonal to y'. In fact m; =0
gives L’b,—fy,=0. We differentiate this by y’ and get
pBg,; —2LLb, +b;y, =0, which leads to a contradiction g, —//, =0.

Now, from (1.1), (1.3), (1.4) and (1.4) 1) the fundamental tensor
g, = 8181,([_,2/2) of F" is given by

g,;,- = pgg,‘ p{]bibj p l(biy/‘ bjyi) pzyiy_,' 2 (05)
where we put

po =q0 f;z’

q.=M./L, r.=q, phlf, (1.5)

a.=f f, f/LJL, p,=q, P/f.

The reciprocal tensor g’ of g, can be written as

g' =(/p)g sbb s (by by) syy, (0.6)

where we put
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b'=g'b, b*=g'bb, =b /L,
SOZZZqO/ pLz,SIZpll_f/p L, (1.6y)
s,=p, pL bZZZ/p r, =Lp gq/L.

From the homogeneity it follows that these quantities satisfy

9 9.L=0, g, qL= p,
p, pL=q q pLC=f,
p, p,L=0, s, sL=ql,
sb s, =p, /.

(0.7)

We denote by the symbol (|) the / -covariant differentiation with respect to
the Cartan connection CI" = (F ' N i_/,Cj. k) and put

J k>

2E, =b, b (0.8)

7
(1.8) 2E,=b,+by,, 2F,=b,, —b,,.

Now we deal with well-known functions G'(x,y) which are (2)p-
homogeneous in ' and are written as G =y ji V/'v/2, by putting
7. =808, +08 -08,)2.

Owing to (1.5) and (1.6), a straightforward calculation leads to
(1.9 G =(F"yy)2=6+D,
where the vector D' is given by
(19 D) D' =(q/p)F's +(pE, —2qF b )(s ¥ +s,b')/2,

F';= girF'rj , and the subscript 0 (excluding s,) means the contraction by Y.

2. RELATION BETWEEN PROJECTIVE CHANGE AND -CHANGE

For two Finsler spaces F" =(M",L) and F"=(M",L), if any geodesic
on F" is also a geodesic on F" and the inverse is true, the change L — L of the

metric is called projective. A geodesic on F" is given by a system of differential
equations

dy'fdt 2G'(x,y)= y', y =dx'/dt, (1.1)
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where 7= (d *s/dt’)/ (ds/ dt), G'(x,y) are (2) p -homogeneous functions in y'.
We are now in a position to find a condition for a /3 -change to be projective. For

this purpose we deal with Euler-Lagrange equations B, =0, where B, is defined
by B =0 L—d(0L)/dt.From (1.1) and (1.2), we have Ldf,/dt+ fdf,/dt=0,
so that the Euler-Lagrange differential equations El =0 for F" are given by
B =fB+2fF, —mdf |dt=0.

In virtue of (1.2) and (1.4) 1), El are written as

B =pLB qlLBmm, A, (1.2)
where the covariant vector 4, is defined by
Ai = 2qE)i quoomf' (13)

From (2.2) we get

Proposition 2.1[10]. 4 f-change L—L = f(L,) of the metric is
projective if and only if the covariant vector A, in (2.3) vanishes identically.

Proof. Since B; =0 (resp. Ez = () are equations of a geodesic on F" (resp.
F"), we immediately obtain A =0 if a B -change is projective. Conversely if
A, =0 holds, then (2.2) shows that B, =0 lead to B, =0. On the other hand, we
observe from (2.2) and 4 =0 that B, =0 give pLB,+q,LBm 'm =0.
Contracting this by m' and referring to m’ =v, pL+vg,L#0, we get
Bm" =0, so that B, =0 hold. Consequently any geodesic remains to be a

geodesic by a  -change.

3. HYPERSURFACES GIVEN BY A PROJECTIVE -CHANGE

Hereafter, we assume that metrics L* and L’ are positive-definite
respectively and we consider hypersurfaces. For their theory we refer to [2]-[4],

[6], [9]-[13]. According to [6], a hypersurface M " of the underlying smooth
manifold M" may be parametrically represented by the equation x' = x'(u%),

. . -1 g
where u“ are Gaussian coordinates on M " and Greek indices run from 1 to
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n—1. Here, we shall assume that the matrix consisting of the projection factors
Bai =8x‘/8u" is of rank n—1. The following notations are also employed :

B, = ox' [ou“ou” By, =Vv'B/,,

element y' ata point (1) of M"" is assumed to be tangential to M "™, then we

Bij"'aﬂ.__ = BaiBﬂj -+« If the supporting

may write y' = Bai(u)v” , so that v* is thought of as the supporting element of
M"" at the point (1) . Since the function L(u,v):= L(x(u), y(u,v)) gives rise
to a Finsler metric of M"", we get an (#n—1)-dimensional Finsler space
F™' =M™, L(u,v)).

At each point (1) of F"™', the unit normal vector N'(u,v) is defined by

gB'N' =0, g NN =1. 2.1
If (B“:,N)) is the inverse matrix of (B, ,N'), we have
B'B = , B'N=0, NB =0, NN =], (2.2)
and further

BB, NN =" 2.3)

Making use of the inverse matrix (g*) of (8,5), we get B =g”g B/,
N, =g,N’.
For the induced Cartan connection ICT =(F,; ,N“,C;) on F "1 the

normal curvature vector /, is given by
H : N(B' N B’), (2.4)

where B, ' =B, V.

Let's introduce in F”" =(M",L) the Cartan connection CT . We now
consider a Finslerian hypersurface F"' =(M "",L(u,v)) of F" and another
Finslerian hypersurface F"' = (M "L (u,v)) of the F" given by the /3 -change.
Let N' be unit normal vector at each point of F"~', and (B“,N,) be the inverse
matrix of (B,',N'). The functions B, (1) may be considered as components of

n—1 linearly independent vectors tangent to F "' and they are invariant under the
[ -change. And so we shall show that unit normal vector N'(u,v) of F"" is
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uniquely determined by
gB'N' =0, gN'N' =1. (2.5)
The fundamental tensor g, = (GZZZ Joy'oy’ )/ 2 of the Finsler space F"
given by the [ -change is as follows:
g, =rg, pbb p.(by by) p.yy,
Now contracting (3.1) by v*, we immediately get
y N =0. (2.6)

Further contracting (1.5) by N'N’ and paying attention to (3.1), (3.5) and
(3.6), we have
gNN' =p pBNYON) @7)

Then we obtain

g, NNp nGNY N/p pbNT =1, @)

provided p+ p,(bN*) >0.
Therefore we can put

]V"ZN“/w/p p, bN' °, (2.9)

where we have chosen the sign “+” in order to fix an orientation.
On using (1.5),(3.1),(3.6) and (3.9), the first condition of (3.5) gives us

bN'" pbB’' pyB’ =0. (2.10)
Now, assuming that p,b B+ p y,B, =0 and contracting this by v*, we

find p,S+p_ L’ =0. By (1.7) this equation leads us to ff, =0. Thus we have

f, =0 because of f #0. This fact means L = f(L) and contradicts the
definition of a f -change of the metric. So, (3.10) gives us

bN' =0. (2.11)
Consequently (3.9) is rewritten as

N=N/Jp (p>0), (2.12)
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and then it is clear N' satisfies (3.5). Summarizing the above, we obtain
Proposition 3.1 [3]. For a field of linear frame (B|,--+,B. ,N') of F",
there exists a field of linear frame (B,---,B' ,,N') of the F" given by the

B -change such that (3.5) is satisfied along F"™', and then we get (3.11).
The quantities B“: are uniquely defined along F""' by B“ =g“g B/’

B
where (g) is the inverse matrix of (&up)-

Let (B“,,N,) be the inverse matrix of (B,', N'), and then we have

B'B= ,B'N=0, NB=0, NN =1, (2.13)
and further
B'B, N'N, = '. (2.14)
We also get ]Vl = gyﬁf , that is,
N =pN. (2.15)

We now assume that a /3 -change of the metric is projective.
Using (1.9), (1.9)1) and Proposition 2.1, we have

D'=G G= y, =qE/2L. (2.16)

Since Dj. = 8ij and ajGi = N';, the above gives

ij:N'; Ni./:yi./ i./" (2'17)
Further contracting (3.17) by N iBé , we get
N.D B =0. (2.18)

If each geodesic of F"~' with respect to the induced metric is also a geodesic
of F", then F"™ is called totally geodesic. A totally geodesic hypersurface F"™'
is characterized by H, =0.

From (3.4), (3.15) and (3.17) we have
H=JpH NDB . (2.19)

Thus from (3.18) we obtain H _— \/;H ., - Hence we have
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Theorem 3.1. A hypersurface F"™' of a Finsler space F"(n>3) is totally

geodesic, if and only if the hypersurface F"™" of the space F", obtained from F"
by a projective [} -change, is totally geodesic.

4. HYPERSURFACES OF PROJECTIVELY FLAT FINSLER SPACES

In this section, we shall consider a projective [ -change and we are
concerned with the Berwald connection BI' on F”=(M",L) and BT on
F"=(M",L). A projective change L — L is defined as follows: If any
geodesic on F" =(M",L) is also a geodesic on F" =(M",L) and the inverse is

true, the change L— L of the metric is called projective. For details see

[5LI71.[8].

In the theory of projective changes in Finsler spaces, we have two essential
projective invariants, one is the Weyl torsion tensor Whl.j and the other is the

Douglas tensor D/ik , so that under the projective [ -change, we get W’; = Why.
and 51 l}k - Dihjk'

Now we are concerned with a projectively flat Finsler space defined as
follows: If there exists a projective change L — L of a Finsler space
F"=(M",L) such that the Finsler space F'"=(M",L) is a locally Minkowski

space, F'" is called projectively flat. We have already known the following.

Theorem A [4]. A Finsler space F"(n>2) is projectively flat, if and only if
w' =0 and D", =0.

ij i jk
Theorem B [11]. If the Finsler space F"(n > 3) is projectively flat, then the

totally geodesic hypersurface F"™ is also projectively flat.
Thus from Theorem 3.1, Theorem A and Theorem B, we have

Theorem 4.1. Let F" (n > 3) be a projectively flat Finsler space. If the

n—1

hypersurface F"" is totally geodesic, then the hypersurface F! of the space

F", obtained from F" by a projective -change, is projectively flat.
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