HYPERSURFACES OF PROJECTIVE β -CHANGES

MASASHI KITAYAMA¹ and TOSHIKAZU TANI²

¹Department of Mathematics, Kushiro Campus, Hokkaido, University of Education, Kushiro, Hokkaido 085-8580, Japan, E-mail: kitayama@kus.hokkyodai.ac.jp ² Konan High School, Koyochyo, Kushiro, Hokkaido, 085-0051, Japan E-mail: tani-toshi@extra.ocn.ne.jp

In 1984 C. Shibata investigated the theory of a change which is called a -change of Finsler metric [10]. On the other hand, in 1985 a systematic study of geometry of hypersurfaces in Finsler spaces was given by M. Matsumoto [6]. In § 1, according to Shibata [10] we shall prepare the terminology and notations for the sake of argument. In § 2, we derive a condition for a -change to be projective [10]. In § 3, we find that a totally geodesic hypersurface F^{n-1} remains to be a totally geodesic hypersurface \overline{F}^{n-1} under the projective -change. In the last section, we get the main result that Finslerian hypersurfaces given by the projective -change are projectively flat on condition the original Finsler space is projectively flat.

Key words: Fundamental tensor, projective change and β-change, hypersurface, projective flat.

1. PRELIMINARIES

Let M^n be an n-dimensional differentiable manifold and $F^n = (M^n, L)$ be a Finsler space equipped with a fundamental function $L(x,y)(y^i=\dot{x}^i)$ on M^n . For a differential one-form $\beta(x,dx)=b_i(x)dx^i$ on M^n , we shall deal with a change of Finsler metric which is defined by $L(x,y)\to \overline{L}(x,y)=f(L(x,y),\beta(x,y))$, where $f(L,\beta)$ is a positively homogeneous function of L and β of degree one. This is called a β -change of the metric.

In this section we shall use the following notations [10]:

$$\begin{split} f_1 &(= f_L) \coloneqq \partial f / \partial L \,, & f_2 &(= f_\beta) \coloneqq \partial f / \partial \beta \,, \\ f_{11} &(= f_{LL}) \coloneqq \partial^2 f / \partial L \partial L \,, & f_{12} &(= f_{L\beta}) \coloneqq \partial^2 f / \partial L \partial \beta \,, \\ \text{etcetera.} \end{split}$$

Since $\overline{L}=f$ is a positively homogeneous function of L and β of degree one, we have

$$f = f_1 L + f_2 \beta$$
, $L f_{12} + \beta f_{22} = 0$, $L f_{11} + \beta f_{12} = 0$. (0.1)

For the later use we put

$$p = f f_1 / L, \quad q = f f_2, \quad q_0 = f f_{22}$$
 (0.2)

Paying attention to $l_i = \dot{\partial}_i L$, from (1.1) we have

$$\overline{l}_i = f_i l_i \quad f_i b_i \tag{0.3}$$

Differentiating this by y^j , we have the angular metric tensor $\overline{h}_{ij} = \overline{L} \dot{\partial}_i \dot{\partial}_j \overline{L}$ on \overline{F}^n :

$$\overline{h}_{ij} = ph_{ij} \quad q_{0}m_{i}m_{j} \tag{0.4}$$

where the covariant vector m_i is defined by

$$m_i = b_i \qquad y_i / L^2 \tag{1.4_1}$$

It is noted that m_i is a non-zero vector orthogonal to y^i . In fact $m_i=0$ gives $L^2b_i-\beta y_i=0$. We differentiate this by y^j and get $\beta g_{ij}-2Ll_jb_i+b_jy_i=0$, which leads to a contradiction $g_{ij}-l_il_j=0$.

Now, from (1.1), (1.3), (1.4) and (1.4) 1) the fundamental tensor $\overline{g}_{ij} = \dot{\partial}_{ij} \partial_{ij} (\overline{L}^{2}/2)$ of \overline{F}^{n} is given by

$$\overline{g}_{ij} = pg_{ij} \quad p_0 b_i b_j \quad p_1 (b_i y_i \quad b_j y_i) \quad p_2 y_i y_j,$$
 (0.5)

where we put

$$p_{0} = q_{0} f_{2}^{2},$$

$$q_{1} = f f_{12}/L, p_{1} = q_{1} p f_{2}/f,$$

$$q_{2} = f f_{11} f_{1}/L/L^{2}, p_{2} = q_{2} p^{2}/f^{2}.$$
(1.5₁)

The reciprocal tensor \overline{g}^{ij} of \overline{g}_{ij} can be written as

$$\overline{g}^{ij} = (1/p)g^{ij} \quad s_0 b^i b^j \quad s_1 (b^i y^j \quad b^j y^i) \quad s_2 y^i y^j, \tag{0.6}$$

where we put

$$b' = g''b_{j}, b^{2} = g''b_{i}b_{j}, = b^{2} {}^{2}/L^{2},$$

$$s_{0} = \overline{L}^{2}q_{0}/pL^{2}, s_{1} = p_{1}\overline{L}^{2}/pL^{2}, (1.6_{1})$$

$$s_{2} = p_{1} pL^{2} b^{2}\overline{L}^{2}/pL^{2}, = \overline{L}^{2}p q_{0}/L^{2}.$$

From the homogeneity it follows that these quantities satisfy

$$q_{0}$$
 $q_{1}L^{2} = 0$, q_{1} $q_{2}L^{2} = p$,
 p_{0} $p_{1}L^{2} = q$, q $pL^{2} = f^{2}$,
 p_{1} $p_{2}L^{2} = 0$, s_{0} $s_{1}L^{2} = q/$,
 $s_{1}b^{2}$ $s_{2} = p_{1}/$. (0.7)

We denote by the symbol () the h-covariant differentiation with respect to the Cartan connection $C\Gamma = (F^i_{j\ k}, N^i{}_j, C^i_{j\ k})$ and put

$$2E_{ik} = b_{ik} \quad b_{k|i}, \tag{0.8}$$

$$(1.8) 2E_{ik} = b_{i|k} + b_{k|i}, 2F_{ik} = b_{i|k} - b_{k|i}.$$

Now we deal with well-known functions $G^i(x,y)$ which are (2)p-homogeneous in y^i and are written as $G^i = \gamma_{jk}^i y^j y^k/2$, by putting $\gamma_{jk}^i = g^{ik} (\partial_k g_{jk} + \partial_j g_{kk} - \partial_r g_{jk})/2$.

Owing to (1.5) and (1.6), a straightforward calculation leads to (1.9) $\overline{G}^i(x,y) := (\overline{\gamma}_{ik}^i y^j y^k)/2 = G^i + D^i$,

where the vector D^i is given by

$$(1.9) 1) D^{i} = (q/p)F^{i}_{0} + (pE_{00} - 2qF_{r0}b^{r})(s_{-1}y^{i} + s_{0}b^{i})/2,$$

 $F^{i}{}_{j} = g^{ir}F_{rj}$, and the subscript 0 (excluding s_{0}) means the contraction by y^{i} .

2. RELATION BETWEEN PROJECTIVE CHANGE AND -CHANGE

For two Finsler spaces $F^n=(M^n,L)$ and $\overline{F}^n=(M^n,\overline{L})$, if any geodesic on F^n is also a geodesic on \overline{F}^n and the inverse is true, the change $L\to \overline{L}$ of the metric is called *projective*. A geodesic on F^n is given by a system of differential equations

$$dy^{i}/dt \quad 2G^{i}(x,y) = y^{i}, \quad y^{i} = dx^{i}/dt,$$
 (1.1)

where $\tau = (d^2s/dt^2)/(ds/dt)$, $G^i(x,y)$ are (2) p -homogeneous functions in y^i . We are now in a position to find a condition for a β -change to be projective. For this purpose we deal with Euler-Lagrange equations $B_i = 0$, where B_i is defined by $B_i = \partial_i L - d(\dot{\partial}_i L)/dt$. From (1.1) and (1.2), we have $Ldf_1/dt + \beta df_2/dt = 0$, so that the Euler-Lagrange differential equations $\overline{B}_i = 0$ for \overline{F}^n are given by $\overline{B}_i = f_1 B_i + 2 f_2 F_{0i} - m_i df_2/dt = 0$.

In virtue of (1.2) and (1.4) 1), \overline{B}_i are written as

$$f\overline{B}_{i} = pLB_{i} \quad q_{0}LB_{i}m^{r}m_{i} \quad A_{r}, \tag{1.2}$$

where the covariant vector A_i is defined by

$$A_{i} = 2qF_{0i} \quad q_{0}E_{00}m_{i}. \tag{1.3}$$

From (2.2) we get

Proposition 2.1[10]. A β -change $L \to \overline{L} = f(L, \beta)$ of the metric is projective if and only if the covariant vector A_i in (2.3) vanishes identically.

Proof. Since $B_i=0$ (resp. $\overline{B}_i=0$) are equations of a geodesic on F^n (resp. \overline{F}^n), we immediately obtain $A_i=0$ if a β -change is projective. Conversely if $A_i=0$ holds, then (2.2) shows that $B_i=0$ lead to $\overline{B}_i=0$. On the other hand, we observe from (2.2) and $A_i=0$ that $\overline{B}_i=0$ give $pLB_i+q_0LB_rm^rm_i=0$. Contracting this by m^i and referring to $m^2=v$, $pL+vq_0L\neq 0$, we get $B_rm^r=0$, so that $B_i=0$ hold. Consequently any geodesic remains to be a geodesic by a -change.

3. HYPERSURFACES GIVEN BY A PROJECTIVE -CHANGE

Hereafter, we assume that metrics L^2 and \overline{L}^2 are positive-definite respectively and we consider hypersurfaces. For their theory we refer to [2]-[4], [6], [9]-[13]. According to [6], a hypersurface M^{n-1} of the underlying smooth manifold M^n may be parametrically represented by the equation $x^i = x^i(u^\alpha)$, where u^α are Gaussian coordinates on M^{n-1} and Greek indices run from 1 to

n-1. Here, we shall assume that the matrix consisting of the projection factors $B_{\alpha}^{\ i}=\partial x^i/\partial u^\alpha$ is of rank n-1. The following notations are also employed: $B_{\alpha\beta}^{\ i}:=\partial^2 x^i/\partial u^\alpha\partial u^\beta$, $B_{0\beta}^{\ i}:=v^\alpha B_{\alpha\beta}^{\ i}$, $B^{ij\cdots}_{\alpha\beta\cdots}:=B_{\alpha}^{\ i}B_{\beta}^{\ j}\cdots$. If the supporting element y^i at a point (u^α) of M^{n-1} is assumed to be tangential to M^{n-1} , then we may write $y^i=B_{\alpha}^{\ i}(u)v^\alpha$, so that v^α is thought of as the supporting element of M^{n-1} at the point (u^α) . Since the function $\underline{L}(u,v):=L(x(u),y(u,v))$ gives rise to a Finsler metric of M^{n-1} , we get an (n-1)-dimensional Finsler space $F^{n-1}=(M^{n-1},\underline{L}(u,v))$.

At each point (u^{α}) of F^{n-1} , the unit normal vector $N^{i}(u,v)$ is defined by

$$g_{ii}B^{i}N^{j} = 0, \quad g_{ii}N^{i}N^{j} = 1.$$
 (2.1)

If (B^{α}_{i}, N_{i}) is the inverse matrix of $(B^{\alpha}_{\alpha}, N^{i})$, we have

$$B^{i}B_{i} = 0, \quad B^{i}N_{i} = 0, \quad N^{i}B_{i} = 0, \quad N^{i}N_{i} = 1,$$
 (2.2)

and further

$$B^{\dagger}B_{i} \quad N^{\dagger}N_{i} = {}^{i}_{j}. \tag{2.3}$$

Making use of the inverse matrix $(g^{\alpha\beta})$ of $(g_{\alpha\beta})$, we get $B^{\alpha}_{i} = g^{\alpha\beta}g_{ij}B_{\beta}^{j}$, $N_{i} = g_{ii}N^{j}$.

For the induced Cartan connection $IC\Gamma = (F^{\alpha}_{\beta\gamma}, N^{\alpha}_{\beta}, C^{\alpha}_{\beta\gamma})$ on F^{n-1} , the normal curvature vector H_{α} is given by

$$H: N_{i}(B_{\bar{n}}^{i} N_{i}B^{j}),$$
 (2.4)

where $B_{\bar{0}\alpha}^{i} = B_{\beta\alpha}^{i} v^{\beta}$.

Let's introduce in $\overline{F}^n=(M^n,\overline{L})$ the Cartan connection $C\overline{\Gamma}$. We now consider a Finslerian hypersurface $F^{n-1}=(M^{n-1},\underline{L}(u,v))$ of F^n and another Finslerian hypersurface $\overline{F}^{n-1}=(M^{n-1},\overline{L}(u,v))$ of the \overline{F}^n given by the β -change. Let N^i be unit normal vector at each point of F^{n-1} , and (B^a_i,N_i) be the inverse matrix of (B^i_a,N^i) . The functions $B^i_a(u)$ may be considered as components of n-1 linearly independent vectors tangent to F^{n-1} and they are invariant under the β -change. And so we shall show that unit normal vector $\overline{N}^i(u,v)$ of \overline{F}^{n-1} is

uniquely determined by

$$\overline{g}_{ij}B^{i}\overline{N}^{j} = 0, \quad \overline{g}_{ij}\overline{N}^{i}\overline{N}^{j} = 1.$$
(2.5)

The fundamental tensor $\overline{g}_{ij} = (\partial^2 \overline{L}^2 / \partial y^i \partial y^j)/2$ of the Finsler space \overline{F}^n given by the β -change is as follows:

$$\overline{g}_{ij} = pg_{ij} \quad p_{ij}b_{ij}b_{ij} \quad p_{ij}(b_{ij}y_{ij} \quad b_{ij}y_{ij}) \quad p_{ij}y_{ij}$$

Now contracting (3.1) by v^{α} , we immediately get

$$y_i N^i = 0. ag{2.6}$$

Further contracting (1.5) by $N^i N^j$ and paying attention to (3.1), (3.5) and (3.6), we have

$$\overline{g}_{i}N^{i}N^{j} = p \quad p_{0}(b_{i}N^{i})(b_{i}N^{j}). \tag{2.7}$$

Then we obtain

$$\overline{g}_{ij} N^{i} / \sqrt{p p_{0} (b_{k} N^{k})^{2}} N^{j} / \sqrt{p p_{0} b_{k} N^{k}^{2}} = 1,$$
 (2.8)

provided $p + p_{\scriptscriptstyle 0}(b_{\scriptscriptstyle k} N^{\scriptscriptstyle k})^2 > 0$.

Therefore we can put

$$\bar{N}^{i} = N^{i} / \sqrt{p - p_{0} b_{k} N^{k}^{2}}, \qquad (2.9)$$

where we have chosen the sign "+" in order to fix an orientation.

On using (1.5),(3.1),(3.6) and (3.9), the first condition of (3.5) gives us

$$b_i N^i - p_0 b_i B^j - p_1 y_i B^j = 0.$$
 (2.10)

Now, assuming that $p_0b_jB_\alpha^{\ j}+p_{-1}y_jB_\alpha^{\ j}=0$ and contracting this by v^α , we find $p_0\beta+p_{-1}L^2=0$. By (1.7) this equation leads us to $ff_2=0$. Thus we have $f_2=0$ because of $f\neq 0$. This fact means $\overline{L}=f(L)$ and contradicts the definition of a β -change of the metric. So, (3.10) gives us

$$b_i N^i = 0. (2.11)$$

Consequently (3.9) is rewritten as

$$\bar{N}^i = N^i / \sqrt{p} \qquad (p > 0), \tag{2.12}$$

and then it is clear \overline{N}^i satisfies (3.5). Summarizing the above, we obtain

Proposition 3.1 [3]. For a field of linear frame $(B_1^i, \dots, B_{n-1}^i, N^i)$ of F^n , there exists a field of linear frame $(B_1^i, \dots, B_{n-1}^i, \overline{N}^i)$ of the \overline{F}^n given by the β -change such that (3.5) is satisfied along \overline{F}^{n-1} , and then we get (3.11).

The quantities $\overline{B}^{\alpha}{}_{i}$ are uniquely defined along \overline{F}^{n-1} by $\overline{B}^{\alpha}{}_{i} = \overline{g}^{\alpha\beta} \overline{g}_{ij} B_{\beta}^{j}$, where $(\overline{g}^{\alpha\beta})$ is the inverse matrix of $(\overline{g}_{\alpha\beta})$.

Let $(\overline{B}^a_i, \overline{N}_i)$ be the inverse matrix of (B_a^i, \overline{N}^i) , and then we have

$$B^{\dagger}\overline{B}_{i} =$$
, $B^{\dagger}\overline{N}_{i} = 0$, $\overline{N}^{\dagger}\overline{B}_{i} = 0$, $\overline{N}^{\dagger}\overline{N}_{i} = 1$, (2.13)

and further

$$B^{i}\overline{B}_{i} \quad \overline{N}^{i}\overline{N}_{i} = {}^{i}_{j}. \tag{2.14}$$

We also get $\overline{N}_i = \overline{g}_{ij} \overline{N}^j$, that is,

$$\overline{N}_i = \sqrt{p} N_i. \tag{2.15}$$

We now assume that a β -change of the metric is projective. Using (1.9), (1.9)1) and Proposition 2.1, we have

$$D^{i} := \overline{G}^{i} \quad G^{i} = y^{i}, \quad = qE_{00}/2\overline{L}^{2}.$$
 (2.16)

Since $D_j^i := \dot{\partial}_j D^i$ and $\dot{\partial}_j G^i = N^i{}_j$, the above gives

$$D^{i}_{j} = \overline{N}^{i}_{j} \quad N^{i}_{j} = y^{i}_{j} \qquad {}^{i}_{j}. \tag{2.17}$$

Further contracting (3.17) by $N_i B_{\alpha}^j$, we get

$$N_i D_i^i B^j = 0. (2.18)$$

If each geodesic of F^{n-1} with respect to the induced metric is also a geodesic of F^n , then F^{n-1} is called totally geodesic. A totally geodesic hypersurface F^{n-1} is characterized by $H_\alpha=0$.

From (3.4), (3.15) and (3.17) we have

$$\overline{H} = \sqrt{p} H N_i D_i^i B^j . \tag{2.19}$$

Thus from (3.18) we obtain $\overline{H}_{\alpha} = \sqrt{p} H_{\alpha}$. Hence we have

Theorem 3.1. A hypersurface F^{n-1} of a Finsler space $F^n (n > 3)$ is totally geodesic, if and only if the hypersurface \overline{F}^{n-1} of the space \overline{F}^n , obtained from F^n by a projective β -change, is totally geodesic.

4. HYPERSURFACES OF PROJECTIVELY FLAT FINSLER SPACES

In this section, we shall consider a projective β -change and we are concerned with the Berwald connection $B\Gamma$ on $F^n=(M^n,L)$ and $B\overline{\Gamma}$ on $\overline{F}^n=(M^n,\overline{L})$. A projective change $L\to \overline{L}$ is defined as follows: If any geodesic on $F^n=(M^n,L)$ is also a geodesic on $\overline{F}^n=(M^n,\overline{L})$ and the inverse is true, the change $L\to \overline{L}$ of the metric is called projective. For details see [5],[7],[8].

In the theory of projective changes in Finsler spaces, we have two essential projective invariants, one is the Weyl torsion tensor W^h_{ij} and the other is the Douglas tensor D^h_{ijk} , so that under the projective β -change, we get $\overline{W}^h_{ij} = W^h_{ij}$ and $\overline{D}^h_{ijk} = D^h_{ijk}$.

Now we are concerned with a projectively flat Finsler space defined as follows: If there exists a projective change $L \to \overline{L}$ of a Finsler space $F^n = (M^n, L)$ such that the Finsler space $\overline{F}^n = (M^n, \overline{L})$ is a locally Minkowski space, F^n is called projectively flat. We have already known the following.

Theorem A [4]. A Finsler space $F^n(n > 2)$ is projectively flat, if and only if $W^h_{ii} = 0$ and $D^h_{iik} = 0$.

Theorem B [11]. If the Finsler space $F^n(n > 3)$ is projectively flat, then the totally geodesic hypersurface F^{n-1} is also projectively flat.

Thus from Theorem 3.1, Theorem A and Theorem B, we have

Theorem 4.1. Let $F^n(n > 3)$ be a projectively flat Finsler space. If the hypersurface F^{n-1} is totally geodesic, then the hypersurface \overline{F}^{n-1} of the space \overline{F}^n , obtained from F^n by a projective -change, is projectively flat.

REFERENCES

1. BÁCSÓ S., MATSUMOTO M., Projective changes between Finsler spaces with (,)-metric, Tensor, N.S., 1994, 55, 252-257.

- 2. KIKUCHI S., On the theory of subspace in a Finsler space, Tensor, N.S., 1952, 2, 67-79.
- 3. KITAYAMA M., Finslerian hypersurfaces and metric transformations, Tensor, N.S., 1998, 60, 171-178.
- 4. KITAYAMA M., *On Finslerian hypersurfaces given by -changes*, Balkan Journal of Geometry and Its Applications, 2002, **7-2**, 49-55.
- MATSUMOTO M., Projective changes of Finsler metrics and projectively flat Finsler spaces, Tensor, N.S, 1980, 34, 303-315.
- MATSUMOTO M., The induced and intrinsic Finsler connections of a hypersurface and Finslerian projective geometry, J. Math. Kyoto Univ., 1985, 25, 107-144.
- 7. MATSUMOTO M., *Projectively flat Finsler spaces with* (,) *-metric*, Reports on Mathematical Physics, 1991, **30**, 15-20.
- 8. MATSUMOTO M., The Tavakol-van den Bergh conditions in the theories of gravity and projective changes of Finsler metrics, Publ. Math. Debrecen, 1993, 42, 155-168.
- 9. MOÓR A., Finslerräume von identischer Torsion, Acta Sci. Math., 1973, 34, 279-288.
- SHIBATA C., On invariant tensors of -changes of Finsler metrics, J. Math. Kyoto Univ., 1984,
 163-188
- 11. SHIBATA C.,. SHIMADA H., AZUMA M., On normal curvature of a hypersurface of Finsler spaces, Analele stiintifice Univ. "Al. I. Cuza" Iasi, s. I.- Matematica, 1985, 31, 97-102.
- 12. VARGA O., Hyperflächen Konstanter Normal Krümmung in Finslerschen Räumen, Math. Nachr., 1968, **38**, 47-52.
- YASUDA H., A theory of subspaces in a Finsler space, Ann. Rep. Asahikawa Med. Coll., 1987, 8, 1-43.

Received January 26, 2011