
F.S.A.I., Vol. 11, No. 1-3, pp. 61-71, 2005

Improving the Recognition System Architecture in

Order to Increase the Set of Recognized Geometric

Shapes


Ioan Z. Mihu, Arpad Gellert, Horia V. Caprita


“Lucian Blaga” University of Sibiu, Computer Science Department, str. Emil Cioran,

nr. 4, Sibiu, 550025, ROMANIA, E-mail: ioan.z.mihu@ulbsibiu.ro,

arpad.gellert@ulbsibiu.ro, horia.caprita@ulbsibiu.ro

Abstract. We examine the effect of shape set extension, over the architectural

parameters of a hierarchical system dedicated to recognize the hand-drawn geometric

shapes. Such a recognition system is helpful in drawing packages and automated

sketch entry in handheld computers. Our method examines the geometric shape as a

whole in a way similar to the human recognition process, using information that is

invariant in terms of scaling, translation and rotation. The recognition system

presented in [5] is able to recognize three hand-drawn shapes: circle, triangle and

rectangle. In this paper we propose an improving strategy of the hierarchical

architecture presented in [5], in order to increase the number of geometric shapes to

recognize. The recognition system utilizes on the first level a fuzzy function for

filtering the angular differences along the shape boundaries, and on the second level a

multilayer feed-forward neural network for classification. The architectural

improvements proposed in this paper consist of both, adapting the fuzzification

process and the neural network architecture in order to increase the number of shapes

to recognize. Extending the number of categories leads unfortunately to the

degradation of the recognition accuracy. The architectural improvements must

compensate this degradation and maintain the recognition accuracy at a satisfactory

level. The study presented in this paper analyses all these emphasized aspects when

one more category is added: ellipse.

Keywords: geometric shape recognition, neural networks, neural shape classification,

fuzzy systems

1 Introduction

The capacity of the neural networks to solve complex problems learning by

examples, gives them a highly large potential of applicability. Building intelligent

systems that can model human behavior has captured the attention of the world for

years. So, it is not surprising that a technology such as neural networks has

generated great interest.

Ulgen et al., in their work [7], implemented a geometric shape classifier and

they have used a neural network with binary synaptic weights (BSW). The BSW

algorithm, which was implemented on a three layer network, determines the

thresholds for the hidden and output layer nodes and the weights of the synaptic

links between the layers, in addition to the number of hidden layer nodes in one

feed-forward pass. The main concept of the algorithm can be explained as the

Mihu, Gellert, Caprita

62

separation of globally intermingled patterns within an n-dimensional space through

the formation of hyperplanes that separate different classes of patterns at a local

region in the space.

In our previous work [5], we used a multilayer feedforward neural network to

recognize the basic geometric shapes such as circles, rectangles or triangles. We

chose the best configuration of the neural network based on the results obtained

with our test images.

In this paper we propose to increase the number of geometric shapes to be

recognized by the two-level hierarchical architecture, presented in our previous

work and to adapt the architecture of the recognition system for the new goal. We

extend the shape set from three to four by adding a new category (ellipse) and we

study the implications that this set extension bring about the recognition system

architecture.

2 The Multilayer Feedforward Neural Network

This section introduces the backpropagation learning algorithm addressed by

the architecture presented in this paper. More detailed descriptions can be found in

classic introductory books [3]. The typical artificial neuron model represents a

device with n inputs and a single output. The output iy of the i-th neuron of the

network is computed as:














 



n

j

jjiii xWpy
1

,)((1)

for i = 1, 2, …, m; where jiW , represents a coefficient or synaptic weight

associated with the j-th input jx and the i-th neuron. The weighted sum ip is

called potential. The nonlinear activation function  in this case is the sigmoid,

xe
x




1

1
)((2)

and the network is trained using the gradient descent method known as

backpropagation. Equation (1) can be rewritten in a matrix form as

)()(xWpy

 . (3)

Usually, the activation function  represents some saturating non-linear

function. Neurons are often organized in layers, all neurons in a layer sharing the

same inputs and having their outputs connected to the inputs of the next layer. The

weight matrixes are then shown as][qW , where q is the layer number.

Geometric Shapes Recognition

63

Neural networks usually undergo a learning process. The synaptic-weight

matrixes are iteratively updated according to a learning rule. One of the simplest

one is the Hebb rule:

);(TxyWW

 (4)

where  is a learning factor. Though this rule is seldom used as stated, most of the

commonly used learning rules are slight modifications of equation (4).

Multilayer neural networks are used for pattern classification, pattern matching,

and function approximation. By adding a continuously differentiable function, such

as Gaussian or sigmoid function, it is possible for the network to learn practically

any nonlinear mapping to any desired degree of accuracy. There are several ways

that multilayer neural networks can have their connection weights adjusted to learn

mappings. The most popular technique is the backpropagation algorithm and its

many variants.

VIN

VHID

VOUTx0

xN

y0

yR

Fig. 1. A multilayer perceptron with 2 active layers (one hidden layer).

Multilayer networks make it possible to implement any arbitrary function

)(xy


 , x


 being the input of the first layer and][Lyy


 representing the output

of the last layer L. Often the activation function  is a hyperbolic tangent. The

function  is learned by repeated presentation of input-output pairs  dx


, , called

prototypes. The backpropagation (BP) learning rule is a gradient-descent algorithm

that updates the weights to minimize the square-error on the learning prototypes.

For that purpose an error signal is computed for each layer [8]:

   ][][][L
i

L
ii

L
i pyd  (5)

 ][

1

]1[]1[
,

][
1

q
i

m

k

q
k

q
ik

q
i pW

q















 





 (6)

for q = 1, 2, …, L-1, where  
 

dv

vd
v


 .

Mihu, Gellert, Caprita

64

The equations (5) and (6) are valid for all the i neurons (i = 1, 2, …, mq) of layer

q . Once the errors have been back-propagated, the weights are updated as:

Tqqqq yWW]1[][][][


 (7)

for q = 1, 2, …, L, where xy


]0[.

3 Adapting The Recognition System’s Architecture

The classical techniques based on shape partitioning into segments, followed by

a syntactical analysis to match with a predefined shape, are strongly affected by

noise and are weak in terms of generalization. To eliminate these limitations of the

classical methods, our method examines the geometric shape as a whole in a way

similar to the human recognition process. Human beings recognize such basic

shapes regardless of the variations in size, noise on the shape border, translation,

rotation, and in the case of triangles, regardless of the type of the triangle. That

means that not the segments are important in the recognition process, but the

angles, which represent the relevant information relatively to the geometric shape.

The key concept is that the neural network learns the internal angles of a shape. As

a consequence, the neural network training process will be simplified, therefore

only a few training samples that represent a class of shapes are sufficient. Our

application’s aim is to recognize the basic geometric shapes (elliptic, rectangular

and triangular shapes).

3.1 On-line Feature Extraction Process

The purpose of preprocessing is to create an intermediate representation of the

input data and it is performed on-line (prior to the application of recognition task).

The preprocessing step can be defined as a feature extraction process that is

important since it prepares input data that is invariant in terms of scaling,

translation and rotation. The feature extraction is performed on the captured points

along the boundary of the shape.

Since the geometric shapes are hand-drawn using the mouse, the information

could include noise due to the variations in capture speed of the mouse and erratic

hand motion while drawing. We have to extract the features of the shape and to

eliminate the noise appeared while drawing, keeping only the essential

characteristics. Also the hand-drawn shape may contain interruptions that must be

eliminated unifying the segments. The on-line feature extraction consists of the

following steps:
 capturing successive points on the shape’s boundary;

 calculating the shape’s weight center;

 extracting significant points;

 detecting the corners of the shape;

Geometric Shapes Recognition

65

 computing the angles between consecutive segments.

Capturing successive points on the shape’s boundary. The point capturing

process is based on the drag and drop event handled by the operating system. The

event generation frequency is constant on a certain computer but dependent on

hardware platform. On the other hand, the drawing speed is different from user to

user or even from instance to instance of the same user. On the drag and drop event

there are captured a number of points that are not neighbors in the real shape’s

boundary and that depends on the drawing speed. Thus, if on the application’s

frame are painted only the captured points obtained on the drag and drop event, a

discontinuous copy of the real shape results. To solve this problem we used an

algorithm, which calculates and stores all the points between any two consecutive

captured points obtained on the drag and drop event.

Calculating of the shape’s weight center. For the calculation of the weight

center of a given geometric shape the next formulas are used:

,,

1

0

1

0

n

y

y
n

x

x

n

i

i

C

n

i

i

C








 
 (8)

where Cx is the horizontal position of the shape’s weight center, Cy is the vertical

position of the shape’s weight center, n is the number of captured points while

drawing, xi is the horizontal position of each captured point, and iy is the vertical

position of each captured point.

Extracting significant points. The next step in the feature extraction process is

the determination of the significant points. There are calculated n angularly

equispaced vectors that start from the shape’s weight center; n is the number of

sample points. The angular distance between any two consecutive vectors is:

n
dist

360
 (9)

The intersection of these vectors with the shape’s boundary represents the

significant points of that shape (for n vectors there will be n significant points). By

tracing line segments between any two significant points, an approximation of the

geometric shape is obtained (figure 2).

As it can be seen in figure 2, an important parameter in the recognizing process

is the number of sample points. For an efficient extraction of the relevant

information necessary for the recognition process of the geometric shape, we have

to use a sufficient number of sample points.

Detecting the shape’s corners. The significant points often avoid the shape’s

corners, and in this situation, a relevant internal angle is replaced by other two

Mihu, Gellert, Caprita

66

successive angles. In figure 3 one corner of the triangle is replaced by two other

corners and in this way, because the shape has four significant internal angles, the

recognition system misclassifies it as rectangle. In other words a part of the

relevant information is lost and in addition other information (noise) appears,

which often leads to wrong classification of the shapes. We implemented an

algorithm, which eliminates these deficiencies, and improves the classification

accuracy.

(xC, yC)

(xC, yC)

Fig. 2. Extraction of sample points (the

intersections of the vectors with the shape’s

boundary).

Fig. 3. Extraction of significant points. One

corner of the triangle was avoided.

The corner-detection algorithm calculates the distances from the points on the

real shape to the straight segment defined by two consecutive significant points

(figure 4). The distances are calculated only for the points which are situated

between those two significant points on the shape’s boundary. When all distances

are less than a certain threshold (T), we consider that the shape’s approximation is

correct. Our experiments showed that a threshold value of 2 leads to best

experimental results. If one of the distances exceeds the threshold value, the

maximum distance is calculated and one of the two significant points is replaced

with the point situated at the maximum distance from the line segment. This is

illustrated in figure 4, where the significant point (x2, y2) will be replaced with the

real corner of the shape (x, y).

The distance between the current point (x, y) from the shape and the straight

segment ((x1, y1), (x2, y2)), is calculated using the following equation:

22 ba

cbyax
d




 , (10)

where 12 yya  , 21 xxb  , and 2112 yxyxc  .

Calculating the angles between consecutive segments. The angle between two

consecutive segments is determined by calculating the angles between each

segment and the horizontal axes (figure 5). The angle is calculated depending on

the quadrant it belongs to. In figure 5 for example, the angles between the two

consecutive segments and the horizontal axes belong to the first quadrant:

2121 180)90,0[,  (11)

Geometric Shapes Recognition

67

where 1 , 2 are the angles between the segments and the horizontal axes, and 

is the angle between the two segments.

d

(x1, y1)

(x2, y2)

(x, y)

1

2

Fig. 4. Detection of the shape’s corners Fig. 5. Calculation of the angle between two consecutive

segments, with)90,0[, 21  .

3.2 Adapting the Fuzzy Classification Process

To generate the input data for the neural network, after the feature extraction

process follows the adaptation of the obtained information. The internal angles of a

geometric shape offer the relevant information necessary to the classification

process. The angles between the consecutive tangent vectors are calculated and we

obtain n angles, which will be classified into four categories (fuzzy). Each angle

receives a membership value depending on the category to which it belongs, as it

follows:

 2 for the angles less than 75 degrees;

 3 for angles between 75 and 110 degrees;

 1 for angles between 110 and 140 degrees;

 0 for the angles greater than 140 degrees.

The membership values must be given in such a way that, after the addition of

the membership values according to the n angles, to obtain different sums for each

class of geometric shape. We have determined that the important angles are the

angles less than 140 degrees.

In the case of a rectangle or a triangle, along the sides we will have angles near

to 180 degrees; because these angles are not significant, they receive 0 as

membership value, in other words these angles will not contribute to the sum.

Since the number of angles less than 140 degrees offers the relevant information

necessary to the recognition process of the basic geometric shapes, only these

angles, through their consistent membership values, will contribute to this sum,

which will be a value from the interval [0, 3n]. Using the sum of the angles’

membership values the dimensions of the shape don’t matter (there is no difference

between a little triangle and a big one), and not even the dimensions of the sides

(there is no difference between a square and a rectangle), only the internal angles

matter.

Adding new categories to be recognized, the fuzzification process must be

adjusted. That is, new categories require more fuzzy classes, in order to assure a

Mihu, Gellert, Caprita

68

powerful discrimination between all shape categories. Increasing the number of

categories to recognize, the recognition rate normally lowers. The adjustment of

the fuzzification process must be done to compensate the performance degradation

of the recognition system. In this study we analyzed the impact over the

recognition system performance produced by adding only one new shape category.

This is the reason for that the fuzzification process required only minor

adjustments. Anyway, the higher number of categories to be recognized, the bigger

adjustments in the fuzzification process must be done.

3.3 Adapting the Neural Network’s Architecture

The neural network’s architecture and the learning algorithm used were

presented in section II. The input vector for the neural network will be obtained

after the serial coding of the sum of the membership values according to the

internal angles of a given geometric shape. In this way, the sum’s value determines

the number of bits on “1” in the serial code, and the rest of bits are “0”.

The neural network is statically trained before its effective use. That means that

the network will be trained using a set of prototypes (a number of representative

learning shapes). Before starting the training process the weights are randomly

initialized. During the training process, if the shape is correctly classified, only a

backward step is made. If the shape is incorrectly classified, the backward step will

be repeated until the classification becomes correct.

For its effective use, the neural network is initialized with the weights generated

by the static training process. During the effective run-time classification process

only the forward step is performed.

The dimension of the input vector must be calculated taking into consideration

the most disadvantageous case that appears when all the angles takes part of the

category with membership value of 3 (angles between 75 and 110 degrees). In this

case the calculated sum will have the maximum value (3n), and therefore we need

3n neurons in the input layer of the neural network. Consequently the neural

network’s input vectors are sequences of 3n binary values.

In the output layer of the neural network we allocate one neuron for each

category. The neuron with the highest output value will win, specifying the

category in which the shape takes part. Increasing the number of shape categories,

for each new category we have to add a new neuron in the output layer. In the

present stage of our work only one new category was introduced, the ellipse, and as

consequence, the total number of shape categories (circle, ellipse, triangle and

rectangle), and respectively the number of output layer neurons became four. Since

the neural network used in this work has three layers, the dimension of the hidden

layer represents a parameter; its value will be established based on the criterion of

the performance maximization. For a significantly higher number of categories, we

consider that more attention must be paid to optimize the neural network

architecture. The improvement might be performed by increasing the number of

Geometric Shapes Recognition

69

neurons in the hidden layer and/or the number of hidden layers, for a more

powerful codification of the categories through higher number of parameters.

4 Experimental Results

The neural network was statically trained with 10 learning shapes for each

shape category. After the learning process the recognition system was evaluated

using 30 test shapes for each category. As we specified in section III, in the feature

extraction process we have to use a number of sample points as great as possible

and in this way we can extract efficiently the relevant information necessary for the

recognition process of the geometric shape. But if we use too many sample points

there is a risk of appearance of the noise in the extracted information. Usually the

noise appears because of the undesirable hand movements while drawing with the

mouse. Therefore, the number of sample points represents a parameter that must be

chosen based on the criterion of the performances’ maximization. In our previous

works [5], we determined through experiments that the optimal number of

significant points is 32.

The internal angles of the shapes are classified into four categories in the

fuzzification stage. We showed in section III, that the little angles are the most

important in the classification process. We have also presented an optimal variant

of fuzzification, which led to the best results in our previous works, too.

In previous works [5], we also studied the influence of the neural network’s

architecture on the performances of the recognition system. The results show that

the optimal solution is to use only one hidden layer with ten neurons. The

evaluation results obtained for three shape categories are presented in table 1.

In this paper we continue our study, analyzing the impact over the recognition

system’s performance, produced by extending the set of prototypes to be

recognized. For the beginning, we added only one new prototype, the ellipse. As

we expected, increasing the number of shape categories, the recognition rate

normally lowers. To compensate the performance degradation of the recognition

system, it was necessary to adapt the system architecture to the new task, more

complex than the previous one. The experimental results obtained for four shape

categories, are presented in table 2.

Table1.

The classification accuracy of the recognition system for three shape categories

Shape category Classification accuracy [%]

Circles 96.66

Triangles 100

Rectangles 96.66

All shapes 97.77

Mihu, Gellert, Caprita

70

Table 2

The classification accuracy of the recognition system for four shape categories

Shape category Classification accuracy [%]

Circles 100

Triangles 100

Rectangles 96.66

Ellipses 80

All shapes 94.16

5 Conclusions

In this paper, we examine the effect of shape set extension, over the

architectural parameters of a hierarchical system dedicated to recognize the hand-

drawn geometric shapes. The recognition system is organized on two levels; the

first one is represented by a fuzzification process and the second one, consists of a

feedforward neural network. Both training and recognition process are made by

extracting the features from the training (test) samples, and by classifying the

internal angles of the shape. The information obtained after the fuzzification

process is used as inputs for the multilayer feedforward neural network. The

network learns the geometric shape classes by their internal angles. The values of

the internal angles are invariant in terms of scaling, translation and rotation.

We analyzed the impact of adding a new category to the prototype set, over the

recognition system performance. The new prototype is the ellipse, which is very

close to an already existing one, the circle. As we expected, the extension of the

prototype set produced a degradation of the recognition system performances. In

order to compensate the recognition accuracy degradation, it was necessary to

adjust the recognition system architecture. For this first extension step the major

adjustments were made in the neural network architecture. For three shape

categories we obtained in [5], a global recognition accuracy of 97.77%. Adding

one new category (ellipse), which is very close to an already existing one (the

circle), the global recognition rate lows to 94.16%.

a.) Distorted trapezium b.) Distorted ellipse a) Distorted trapezium b.)Distorted ellipse

Fig. 6. Recognized shapes. Fig. 7. Unrecognized shapes.

Geometric Shapes Recognition

71

For a significantly higher number of categories, we consider that the neural

network will require major architectural adjustments, including a higher number of

hidden layer neurons, or even a higher number of hidden layers, in order to obtain a

more powerful codification of the shapes’ characteristics in the extended prototype

set. In that case, also the fuzzification process must be significantly adjusted by

adding new fuzzy classes to properly cover the extended set of prototypes.

Our system works properly and recognizes even the distorted shapes,

neglectfully drawn by the user. Figure 6 presents neglectfully drawn shapes

recognized by our system and figure 7 presents strongly distorted shapes, which

can’t be recognized.

One of the future developments of the recognition system will consist in

architectural adjustments, in order to improve the recognition system

performances. Our intention is to add new relevant information in the input vector

of the neural network in order to obtain a better separation of the prototypes in this

new extended input space. This better separation will permit also a significant

extension of the shape set without an unacceptable performance degradation. This

architectural improvements leads, however, to an increased volume of

computations for the recognition process. That is, the architectural improvements

must be done preserving the on-line characteristic of the application.

References

[1] L. S. DAVIS: Understanding shape: angles and sides, IEEE Trans. on Computers, vol. C-26,

pp. 125-132, 1977.

[2] I. GUYON: Neural networks and applications, Internal Report AT & T Bell Labs, 1990.

[3] J. HERTZ, A. KROGH, R. PALMER: Introduction to the Theory of Neural Computation, Santa

Fe Institute Studies in Sciences of Complexity, Addison-Wesley, Redwood City, California,

1991.

[4] F. HORNIK: Multilayer feedforward networks are universal approximators, Neural Networks,

vol.2, pp. 359-363, 1989.

[5] I. Z. MIHU, A. GELLERT, C. N. SUCIU: Geometric shape recognition using fuzzy and neural

techniques, In Proceedings of the 11th International Scientific Symposium SINTES 11, pp. 354

– 358, Craiova, 2003.

[6] R. J. SCHALKOFF: Artificial Neural Networks, McGraw-Hill, 1997.

[7] F. ULGEN, N. AKAMATSU AND M. FUKUMI: On-line shape recognition with incremental

training using a neural network with binary synaptic weights, Industrial Applications of NNs,

CRC Press, pp. 159-192, 1999.

[8] J. M. ZURADA: Introduction to Artificial Neural Systems, West Publishing Company, St. Paul,

1992.

