
F.S.A.I., Vol. 8, Nos. 1–3, pp. 5–23, 2002 

 

 

An On-line Approach to Fuzzy Modeling 
 

Euntai Kim, Heesung Lee 
 

School of Electrical and Electronic Engr.,  

Yonsei University 

134 Shinchon-dong, Seodaemun-gu, Seoul, Korea, 120-749. 

 

Abstract: This paper presents an explanation regarding on-line identification of a 

fuzzy system. The fuzzy system to be identified is assumed to be in the type of 

singleton consequent parts (type) and be represented by a linear combination of fuzzy 

basis functions (FBF's). For on-line identification, squared-cosine (SCOS) 

membership functions are introduced to facilitate the parameter tuning. Then the 

parameters of the fuzzy system are identified on-line by the gradient search method 

(GS), the extended Kalman filter (EKF) and the hybrid approach (HYB). This paper 

differs from the previous works regarding the fuzzy modeling in that (1) it is 

concerned with the on-line identification and (2) not only the consequent parts but 

also the premise parts are jointly tuned during the parameter adaptation. Finally 

computer simulations are used to help explain the suggested methods and also 

differentiate between previous works. 

 

Key word: fuzzy system, on-line identification, squared-cosine membership function, 

gradient search, extended Kalman filter 

 

1. Introduction 

 

Over the last two decades, the fuzzy theory suggested by Zadeh has received 

significant attention from many researchers and has been successfully applied to 

various fields. In recent years, the fuzzy theory has grown to the concept of 'Soft 

computing' [1] in association with neural network, evolutionary algorithm, artificial 

intelligence, etc. In essence, we have come a long way since the conventional 

concept of 'hard computing' or 'numerical method'.   

In most applications of the fuzzy theory (e.g., the application in control systems 

or prediction systems), the main design objective is to construct a fuzzy system to 

approximate a desired control system or process. However, the parameters of the 

system are usually decided by the skilled and experienced operators in heuristic 

manners. Until now, despite the fast development and wide application of the fuzzy 

system theory, only a few studies on the automatic identification of the fuzzy 

system have been conducted.  

For example, Pedrycz [2, 3] suggested the identification algorithms of fuzzy 

relational model. Sugeno and his colleagues proposed the identification of so-

called TSK (Takagi-Sugeno-Kang) fuzzy system [4-6]. Recently, other researchers 

also participate in the identification of the TSK fuzzy system [7-12]. Sugeno and 

Yasukawa reported qualitative modeling of a fuzzy system [13] and some 

researchers attempted to identify the fuzzy system via the neural-network-based 

approaches [14-17]. 
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However, most of these are the off-line algorithms and it takes much time for 

them to identify the fuzzy system. Owing to the off-line property, the algorithms 

mentioned above couldn’ t be applied to the situations where real-time or on-line 

data processing is required such as in adaptive control and signal processing. Even 

though on-line successive fuzzy modeling was suggested in [18], it cannot be 

viewed as an on-line algorithm since it requires an initial fuzzy model, which is 

fully constructed in advance by other algorithms.  

To solve this problem, this paper proposes on-line identification algorithms of a 

fuzzy system. First, squared-cosine (SCOS) membership functions (MFs) are 

introduced to make the fuzzy system smoother (more differentiable) than the ones 

with the triangular MFs and to prevent the redundant overlapping of MFs in the 

universe of discourse, which may happen in case of gaussian MFs. Then, the 

parameters of the fuzzy system are identified on-line by three different methods: 

the gradient search method, the extended Kalman filter and their hybrid approach. 

 This paper is composed as follows: In Section II, the fuzzy system is reviewed 

briefly and the structure of the fuzzy system and the SCOS MF are proposed. In 

Section III, the on-line algorithms are presented. In Section IV, some benchmark 

examples and the results of the computer simulation are provided to compare the 

algorithms suggested herein with the previous works and to demonstrate the 

validity of the suggested algorithms. Finally, in Section V, the concluding remarks 

are presented. 

 

2. Fuzzy Systems and some properties 

 

A. Types of Fuzzy System and Notation 

 

Since Mamdani applied fuzzy logic to a practical system [19], many different 

fuzzy systems have been used with different structures, MFs, etc. Generally, these 

systems can be categorized into the following three types according to their 

consequent parts: 

 

Type Ⅰ: (Type of the linguistic consequent parts) 

nn n n n
1 2 m1 2 m: If  is  and  is  , ,  is  , then y is R A A Ax x x C  

Type Ⅱ : (Type of the singleton consequent parts) 

nn n n n
1 2 m1 2 m: If  is  and  is  , ,  is  , then y is R A A Ax x x 

 

Type Ⅲ : (Type of the linear consequent parts) 
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n n n n

1 2 m1 2 m

n n n n

0 1 1 2 2 m

: If  is  and  is  , ,  is  ,R A A A

then y =  + + + +a a a a

x x x

x x




 

  

where n
iA and nC are fuzzy variables, n  is a singleton and n

ia 's are the 

coefficients of consequent parts.  

Remark 1. 

(1)Type Ⅱ can be viewed as the intermediate type of type Ⅰ and type Ⅲ.  

(2)Type Ⅲ is suggested by Sugeno and his colleagues [4], and usually called 

TSK (Takagi-Sugeno-Kang) fuzzy system or Sugeno-type fuzzy system.  

In this paper, the following type   fuzzy system   with the singleton 

consequent parts is considered: 

 

1 21 2 m m

1 2 m

1 2 m1 2 m

, , ,

n nn n n n

n n n

: If  is  and  is  , ,  is  ,R A A A

then   y   is  

x x x









      (1) 

 1 2 m1 2 m( =1, ,   =1, ,      ,   =1, )M M Mn n n   
 

where  mxxxx ,,, 21  and y are the input and the output variables of the 

fuzzy system  , respectively. As noted in  (1), the fuzzy system   is assumed to 

be RR  Vm: , where m
mUUUU R 21 and the number of 

fuzzy rules is i

m

i
M

1
 . Generally speaking, a fuzzy system consists of four principal 

components: a fuzzifier, a fuzzy rule base (implications), a fuzzy inference engine 

and a defuzzifier [20-22]. If the fuzzifier is a singleton, the T-norm in fuzzy 

implication and inference is a product inference and the defuzzifier is the center 

average, then the fuzzy system of  (1) can be formulated by  (2-1) through (2-8).  

       mm xxxxy ,,, 21   
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 
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 

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
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   (2-1) 
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













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

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




11

1

   (2-2) 

where the following notations are introduced for simplification: 
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     1 2[ , , , ]mn n n n     (2-3) 

     mMMMM ,,, 21     (2-4) 

       
   


M

n

M

n

M

n

M

nm1 1 1 11 1 2

    (2-5) 

       i

n
m

i

n xAx 1
1

    (2-6) 

   
 

 x

x
x

n
M

n

n
n






1

   (FBF (Fuzzy Basis Function))   (2-7) 

 

B. Squared Cosine Membership Functions 

 

Type II fuzzy system usually uses gaussian, triangular or trapezoidal MFs. For 

example, Wang used gaussian MFs in [23] and Zeng and Singh adopted triangular 

and trapezoidal MFs in [21, 22]. As an alternative choice for the MFs, SCOS MF is 

proposed in this subsection. The SCOS MF is defined as in (3) and is shown with 

the universe of discourse in Fig. 1. 

 

 

Fig. 1 – The universe of discourse and squared-cosine membership functions 
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     (3) 

where  
1

i  (n = 1, ,  )M
m n n

i i id  
    

 

Remark 2. 

(1) Compared to the triangular or the trapezoidal MFs, the SCOS MF is more 

smooth at every point and differentiable even at 1n
i , n

i  and 1n
i . The 

differentiability at 1n
i , n

i  and 1n
i  can be clearly demonstrated by showing 

that 

   

( ) ( )
lim  = lim

n n
i i i i

n n

i ii i

i i
x x

d dx xA A

d dx x    

 

   
1 1

( ) ( )
lim  = lim

n n
i i i i

n n

i ii i

i i
x x

d dx xA A

d dx x 
    

 

   
1 1

( ) ( )
lim  = lim

n n
i i i i

n n

i ii i

i i
x x

d dx xA A

d dx x 
    

 

(2) In case of the SCOS MF, FBF,  xn  turns to be the product of MFs as in 

the triangular MFs, that is,   

   

1 2

1 21 1 1 1 1

(x)  ( ) 1
m

i

m

mM
n

i i
n i

MM M
n

n n n
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    

      
 

and  

  
1

1

(x)
(x) (x) ( )

(x)

i

n
m

n n
i iM

n i

n

n xA



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   


 

 

Then the output is reduced to (4) as in the case of the triangular MFs.  
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     (4) 

Compared to (2-2), the reduced representation of (4) is more suitable for both 

the fast fuzzy inference and the on-line identification. The proof of this remark is 

given in appendix. 

(3) While the gaussian MF is specified by the center and the width, the SCOS 

MF is determined by the boundary values ( n
i  and 1n

i ). Thus compared to 

gaussian MF, the SCOS MF is more consistent and can prevent the overlapping of 

the redundant MFs. 

 

3. On-Line Identification 

 

Among a panoply of various learning schemes, the gradient search and the 

extended Kalman filter (EKF) approaches are the most popular and widely used 

algorithms in the field of identification [24, 25]. In this paper, three different 

strategies are used to identify a fuzzy system adopting SCOS MFs on-line:  

  (1) the gradient search algorithm (GS) 

  (2) the extended Kalman filter (EKF)  

  (3) the hybrid approach of (1) and (2) (HYB). 

In the following subsections, these three algorithms are explained briefly one by 

one and their characteristics including merits and demerits are presented in 

comparison with those of each other. Before that, some initial construction of a 

fuzzy system to be identified is discussed and some simple preprocessing is 

explained. 

 

A. Initial Fuzzy System Construction  

 

The numbers of fuzzy sets for each coordinate (i.e., iM  for the i ’th coordinate) 

are assumed to be given in advance. Then, iM  SCOS fuzzy MFs i

i
nA 's are 

defined, which uniformly cover iU , the projection of U  onto the i ’th coordinate. 

In other words, the premise parameters ( ,  ,  in

i i
M  ) of the fuzzy system 
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adopting SCOS MFs are positioned in this order with the identical intervals 

between the neighboring points to cover iU . During the on-line identification, the 

order should be kept and cannot be changed.  

After the aforementioned initial construction is completed, the given initial 

fuzzy system with initialized premise parameters and arbitrary consequent 

parameters is represented as in  (5): 

              

1 21 2 m m

1 2 m

1 2 m1 2 m

, , ,

1 2 m1 2 m

n nn n n n

n n n

: If  is  and  is  , ,  is  ,R A A A

             then   y   is  

( =1, ,   =1, ,      ,   =1, )M M M

x x x

n n n









   

     (5) 

or in input-output representation as in (6): 

 

 
1 2

1 2 m

1 2

1 2m
1

, , , 1 1

1 1 1 1

n n n

 = (x , ) = ( , , , , ) = (x)y

      ( , , , )
m

i i ii

m

M
n n

m
n

m

i i i i i
i

MM M
n n nn

n n n

x x x

xA

  

   



 

   

   

    
     (6) 

where the parameters to be identified on-line are consequent parameters 1 2 m, , ,n n n  

i( =1, ,  1, , )Mi i mn    and premise parameters i ( 1, , ,  =1, )Mi

ii
k i m k   . 

For simplicity, the parameters are collected to form a vector as follows: 

   1 2 m, , ,n n n( )( , )
TT T

c p      ( 1L  matrix) 

where 
1,1, ,1 ,1 2, ,(  , ,  )T M M M m

c  
 

- consequent parameters (
1

m

c i
i

L M


 elements) 

  1 1 11 2
1 21 2( , , , , , ,   , , , )T M M M m

p m m        

- premise parameters (
1

( 2)
m

p
i

ML


  elements), ( 1
1 's and M i

m 's are fixed to 

cover the domain of interest.) 

  
1 1

( 2)
m m

c p i
i i

L ML L M
 

        (the size of  ). 

In the following subsections, how to adjust the premise and consequent 

parameters is presented. 

 

B. Gradient Search Algorithm 
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The gradient search algorithm is widely used parameter tuning algorithm [24]. 

In this paper, gradient search algorithm is used to adapt the parameters on-line in 

the direction of the negative gradient as shown in  (7)  

  ( 1) ( ) ( ( ) ( 1))
( )

E
t t t t

t
     




     


     (7) 

where t  refers to the number of iterations (time),   is the learning rate and   

is the momentum rate. For )(ˆ tp  and )(ˆ tc , different learning rates are used and 

they are denoted by 
p

 and 
c

 , respectively. The cost function is given by:  

     
21

( ( ) ( ))
2

d m
t tE y y  

where 
d

y  is the desired value and 
m

y  is the output from the fuzzy model. In  

(7), the gradient of the cost function with respect to each parameter is expressed as 

   
( )

( ( ) ( ))
( ) ( )

m

d m

tE y
t ty y

t t 


  

 
 

and 
( )

( ) ( )

m
ty

t t 

 


 
 can be derived numerically. The gradient search 

algorithm involves only some element-by-element additions and multiplications 

and is computationally simple, compared to other parameter tuning algorithms. 

However, the gradient search algorithm has some problems as follows: 

(1) The convergence is inherently slow since the learning rate is fixed and the 

algorithm is subject to the effects of local minims.  

(2) The performance is sensitive to the learning rate and the momentum, which 

are chosen in a heuristic manner.  

(3) Furthermore, since it weighs the current measurement too much rather than 

past measurements, the algorithm is sensitive to measurement noise. 

 

C. Extended Kalman Filter (EKF) 

 

Another approach to nonlinear estimation is to linearize the nonlinear model 

around a given operating point and apply optimal linear estimation to the linearized 

system. The extended Kalman filter is such an approximate algorithm and can be 

viewed as an extended version of the linear Kalman filter to the nonlinear case. It 

computes an estimate at each sampling instant by the use of the linear Kalman filter 

on the linearized system of the nonlinear system [26-28]. In this subsection, the 

EKF is briefly explained and it is applied to the on-line identification of a fuzzy 

system represented as in  (6). 
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Assume a nonlinear discrete-time system represented by the following 

equations: 

     x(t+1) = f(x(t)) + w(t)      (8) 

     y(t+1) = h(x(t)) + v(t)      (9) 

where x(t)  and y(t)  are the state and observation vectors, respectively, and 

f( )  and h( )  are time-invariant nonlinear functions. Also w(t)  and v(t)  are 

independent Gaussian white noise vectors with zero mean and known covariance 

Q(t)  and R(t) . The EKF updates the current estimated state vector x( 1)t t   

based on the observations up to time 1t   by the following recursive equation 

[25]: 

     x( 1 ) f (x( ))t t t t   (10-1) 

        x( ) x( 1) K( )[ ( ) h(x( 1))]t t t t t y t t t      (10-2)  

  
1T TK( ) P( 1)  H( ) [H( ) P( 1) R( )]H( )t t t t t t t tt


      (10-3) 

   
T

P( 1 ) = F( ) P( ) Q( )F( )t t t t t tt   (10-4) 

                P( ) = P( 1) K( ) H( ) P( 1)t t t t t t t t    (10-5) 

where the matrix F( )t  and the H( )t  have the appropriate size and are defined 

by 

         ttxx
x

f
tF /,















  (11-1) 

       1/, 











 ttxx

x

h
tH


 (11-2) 

Since the EKF is just the approximate estimate method based on the 

linearization of f (x( ))t  and h(x( ))t  around the estimated points, the EKF may 

also stay at local minims as in the case of the gradient search. Nevertheless, many 

successful applications have been reported due to its excellent convergence 

properties [25, 27] 

To apply the EKF to the on-line identification of the fuzzy system of (6), the 

fuzzy system is recast to the configuration of the state-space and observation 

system as follows: 
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    ( 1) ( )t t    (12-1) 

   
( )  ( ( ))  ( )

        ( )  ( )

d

m

t t v ty

t v ty

  

 
 (12-2) 

where t  denotes time. ( )v t  is assumed to be a white noise with variance  . 

The application of the EKF to the identification of the fuzzy system of  (12) 

provides the following on-line identification algorithm: 

              ( ) = ( 1) + K( ) [ ( ) ( )]
d m

t t t t ty y     ( 1)L  (13-1)  

  

T

T

P( -1) H( )
K( ) = 

H( ) P( -1)  +H( )

t t
t

t t t 
 ( 1)L  (13-2) 

  P( ) = P( -1) K( ) H( ) P( -1)t t t t t  ( )L L  (13-3) 

where, for simplicity, P( ) = P( )t t t  and )()(ˆ ttt 


  since 

P( ) = P( 1 )t t t t  and )(ˆ);1(ˆ)( tytttt m


 is the output from the fuzzy 

model based on the 1t   parameter estimations, i.e.,  ))1(),(()(ˆ  ttxtym  . 

From  (11-2), H( )t  is given as follows: 

  

H( )=t


 
 
  ( ) = ( 1)t t    

    1 2

,  ,  ,  
L  

   
  

    ( ) = ( 1)t t   (1 )L  

where 
i


 ( (1, , )i L ) can be derived numerically. Further, usually the 

variance   is unknown a priori and it should be estimated as in [28]. In this paper, 

however,   is set to 1, for simplicity, which means all sample data are given unit 

weights and all of them are considered to be equally important. 

As far as the implementation of the EKF is concerned, the following problem 

should be taken into consideration. When the number of the inputs or the number 

of the fuzzy rules involved are high, the EKF recursive equations represented by 

(13) may become computationally intractable because the size of the P( )t  may be 

too large ( )L L . In this case,  ( 1 matrix)L  cannot be updated all together at a 

time. To facilitate the implementation, the parameter vector   is divided into 

several subvectors and the subvectors are identified in series. For example, in 
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( , )
TT T

c p   , the previous estimates of c̂  are used for the update of p̂  in the 

present iteration and then c̂  are updated assuming that the newly updated p̂  is 

the true value of p .  

 

D. Hybrid Approach (HYB) 

 

The gradient search consists of only element-wise additions and multiplications 

and is computationally simple but the performance is very sensitive to the learning 

rate and the momentum chosen in a heuristic manner. On the contrary, the EKF is 

more reliable than the gradient search but computationally more expensive. The 

hybrid approach is the combined version of the two algorithms; it is 

computationally simpler than the EKF and outperforms the gradient search.  

As noted in  (6), the output of the fuzzy model is linear in the consequent 

parameters and nonlinear in the premise parameters. In the hybrid approach, for 

the consequent parameters, the EKF is used for the update because the Kalman 

filter guarantees the faster convergence than the gradient search for the linear 

parameters. For the premise parameters, on the other hand, the gradient search is 

adopted to lessen the computational burden because even the EKF gives only 

approximate estimates of the nonlinear parameters. In summary, the hybrid 

approach is given as follows:  

For ( , )
TT T

c p    

                 ( 1) ( ) ( ( ) ( 1))
( )

p p p pp

p

E
t t t t

t
   




     


 ( 1)pL   (14-1) 

              c( ) ( 1) ( ) [ ( ) ( )]Kc c d m
t t t t ty y      ( 1)cL   (14-2)  

  c

c

c

c

c c

( 1) ( )P H
( )K

( 1) 1( ) P  ( )H H

T

T

t t
t

tt t




 
 ( 1)cL   (14-3) 

  
c c c c c( ) ( 1) ( ) ( ) ( 1)P P K H Pt t t t t     ( )c cL L  (14-4) 

 

4. Computer Simulation 

 

In what follows, several illustrative examples are provided to illustrate the 

validity of the suggested methods. Some examples are taken from the previous 

works [8, 13, 16, 29] to compare the performance of the proposed on-line fuzzy 
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system with those of conventional fuzzy systems. For comparison, the performance 

measures used in the original papers are adopted such that the performance 

measures differ from example to example.  In every example, however, a lower 

number means better performance. 

 

A. Example 1 

 

The target system to be modeled is a nonlinear static function expressed by (15) 

taken from [8] and [13].  

  
2

1 2
2 1.5

1 2  ,   1 ,  5(1    )y x xx x
         (15) 

One hundred points are taken randomly from 1 2 1 ,  5x x   to form input-

output data and the fuzzy models are built on-line by the suggested three 

algorithms one by one. In this example and the following examples, each universe 

of discourse is assumed to be covered by five fuzzy MFs 

1 2( 5)mM M M    . 

In the GS-based method, 
p

 , 
c

  and   are set to 0.2, 0.6, and 0.2, 

respectively, because they provide the fastest convergence in several trials. In the 

EKF-based identification, P(0)  is initialized by 10 I . In the hybrid approaches, 

p
 ,  , and c(0)P  are set to 0.5, 0.2 and 10 I . If not specified in the following 

examples, P(0)  is initialized by 10 I . In this example, the MSE (Mean Squared 

Error) is used as a performance measure as follows: 

  22

1

1
( ( )  ( ))PM MSE    

n

i
d m

i iy ye
n 

     

The performance measures of the suggested three on-line algorithms are given 

in Table 1 with those of other conventional methods. While fifty sample data are 

trained off-line for thousands of epochs in [8] and [13], one hundred data are used 

on-line (one epoch) in the suggested three algorithms.  
 

Table 1 

 
 COMPARISON OF PERFORMANCE (EXAMPLE 1) 

Model PM 

Kim et al [8] 0.0197 

Sugeno and Yasukawa [13] 0.0790 

Gradient search 0.0247 

Extended Kalman filter 0.0193 

Hybrid 0.0255 
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It is quite noticeable that one of the suggested on-line implemented fuzzy model 

(the EKF-based model) even outperforms the conventional off-line models. Fig. 2 

shows the plot of the performance measure vs. time. In this figure, although the 

identification is carried out on-line assuming that only the present sample is 

available, the MSE calculated using a batch of all sample data is drawn for 

reference. 

Fig. 3 compares the original system to the fuzzy systems reconstructed by the 

suggested algorithms.  

 

Fig. 2 – MSE vs. time (Example 1) 

 

 

Fig. 3 – Original system and on-line reconstructed fuzzy systems  

(Example 1) (a) Original  (b) GS  (c) EKF  (d) HYB  

 

B. Example 2 
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In this example, a nonlinear system with two inputs ( 1x  and 2x ) and a single 

output y  defined by 

      
2

1 2
1.5
1 2  ,   1 ,  3(2    1.5sin(3 )y x xx x        (16) 

is used. This example is taken from [16]. As in Example 1, one hundred points 

are taken randomly from 1 21 ,  3x x   to form input-output data and the fuzzy 

models are formed on-line by the suggested three algorithms. In the GS-based 

method, 
p

 , 
c

  and   are set to 0.005, 0.085 and 0.005, respectively, which 

showed the fastest convergence in several trials. In the hybrid approaches, both of 

p
  and   are set to 0.001. In this example, the performance measure, which was 

adopted in [16] is used for comparison. The performance measure is defined as 

follows and the comparison of performance is given in Table 2. 

  

2

1

1

( ( ) ( ))

PM
( )

n

i

n

d
i

d m
i iy y

iy









 

 
Table 2 

 
 COMPARISON OF PERFORMANCE (EXAMPLE 2) 

Model PM 

Lin and Cunningham [16] 0.00497 

Gradient search 0.08400 

Extended Kalman filter 0.02090 

Hybrid 0.02500 

 

 

In this example, none of the suggested algorithms outperforms the conventional 

method. However, when taking into account that the parameters in [16] were 

updated for 2800 epochs and the parameters of the suggested methods are 

identified on-line (only for one epoch), we can say that the results are acceptable 

and the suggested algorithms are appropriate for the applications requiring the real-

time processing. Fig. 4 is the plot of the performance measure vs. time and Fig. 5 is 

the figure, which compares the original system and the fuzzy systems reconstructed 

by the suggested algorithms.  
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Fig. 4 – PM vs. time (Example 2) 

 

 

Fig. 5 – Original system and on-line reconstructed fuzzy systems  

 (Example 2) (a) Original  (b) GS  (c) EKF  (d) HYB  

 

C. Example 3 

 

The system to be studied in this example originally appears in [29] and is 

described by the (17). 
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2 2 2 2

1 2 1 2( 0.5) ( 2.5) ( 2.5) ( 3.5)
10 exp exp

0.75 3.75 0.05 0.05

x x x x
y

       
         

    

   

            
2 2 2 2

1 2 1 2( 3.0) ( 3.5) ( 4.5) ( 1.0)
exp exp

0.05 0.05 1.50 1.00

x x x x      
        

   

     (17) 

            
2 2

1 2

1 2( 4.5) ( 4.5)
exp    ,   0 ,  5

0.50 0.50

x x
x x

   
     

 

    

One hundred samples are taken from the function to form the fuzzy models. In 

the GS-based method, 
p

 , 
c

  and   are chosen to be 0.01, 0.2, and 0.05, 

respectively, by several trials. In the hybrid approach, the same 
p

  and   are 

used. In this example, only the performance measures of the suggested algorithms 

are compared with each other. This is because the modeling suggested in [29] is a 

model-based strategy, as opposed to the sample-databased strategies of this paper, 

and therefore the performance comparison with [29] is meaningless. In this 

example, the MSE (Mean Squared Error) is used as a performance measure: 

22

1

1
( ( )  ( ))PM MSE    

n

i
d m

i iy ye
n 

     

The performance measures are compared with each other in Table 3. It can be 

noted that the performance measure of the hybrid approach is almost as good as 

that of the EKF-based method in this example. 

 
Table 3 

 
 COMPARISON OF PERFORMANCE  

(EXAMPLE 3) 

Model PM 

Gradient search 2.8857 

Extended Kalman filter 1.0388 

Hybrid 1.1821 

 
 

The MSE vs. time is monitored in Fig. 6. The original system and the fuzzy 

systems reconstructed by the suggested algorithms are compared in Fig. 7. 
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Fig. 6 – MSE vs. time (Example 3) 

 

 

Fig. 7 – Original system and on-line reconstructed fuzzy systems  

(Example 3) (a) Original  (b) GS  (c) EKF  (d) HYB 

 

5. CONCLUSION 

 

In this paper, on-line identification methodologies for a fuzzy system are 

proposed and their validity is verified through computer simulations. First squared-

cosine MFs is introduced to reduce the number of parameters and to make on-line 

identification tractable. Then the on-line identification of the fuzzy system 

adopting SCOS MFs is carried out by the gradient search method (GS), the 

extended Kalman filter (EKF) and the hybrid (HYB) approach of the GS and the 
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EKF. The applications of the discussed on-line identification methodologies are 

numerous. The direct use of identification arises in nonlinear adaptive control and 

signal processing with little prior knowledge available. However, as the number of 

input increases, the suggested algorithms may lead to the combinatorial explosion 

of the fuzzy rules and the further studies regarding the problem are needed. 

 

APPENDIX 

 

For  mxxxx ,,,' 21  , assume 
1*

111
11 kk

x   , 
1*

222
22 kk

x   , 
1*mm k

mm
k
m x   . 

For i th component ix , only two memberships are fired at an instant as follows: 
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